Cargando…
Ferroptosis in Friedreich’s Ataxia: A Metal-Induced Neurodegenerative Disease
Ferroptosis is an iron-dependent form of regulated cell death, arising from the accumulation of lipid-based reactive oxygen species when glutathione-dependent repair systems are compromised. Lipid peroxidation, mitochondrial impairment and iron dyshomeostasis are the hallmark of ferroptosis, which i...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696618/ https://www.ncbi.nlm.nih.gov/pubmed/33202971 http://dx.doi.org/10.3390/biom10111551 |
Sumario: | Ferroptosis is an iron-dependent form of regulated cell death, arising from the accumulation of lipid-based reactive oxygen species when glutathione-dependent repair systems are compromised. Lipid peroxidation, mitochondrial impairment and iron dyshomeostasis are the hallmark of ferroptosis, which is emerging as a crucial player in neurodegeneration. This review provides an analysis of the most recent advances in ferroptosis, with a special focus on Friedreich’s Ataxia (FA), the most common autosomal recessive neurodegenerative disease, caused by reduced levels of frataxin, a mitochondrial protein involved in iron–sulfur cluster synthesis and antioxidant defenses. The hypothesis is that the iron-induced oxidative damage accumulates over time in FA, lowering the ferroptosis threshold and leading to neuronal cell death and, at last, to cardiac failure. The use of anti-ferroptosis drugs combined with treatments able to activate the antioxidant response will be of paramount importance in FA therapy, such as in many other neurodegenerative diseases triggered by oxidative stress. |
---|