Cargando…
Identification and Validation of Carbonic Anhydrase II as the First Target of the Anti-Inflammatory Drug Actarit
Background and purpose: Identifying the macromolecular targets of drug molecules is a fundamental aspect of drug discovery and pharmacology. Several drugs remain without known targets (orphan) despite large-scale in silico and in vitro target prediction efforts. Ligand-centric chemical-similarity-ba...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7699199/ https://www.ncbi.nlm.nih.gov/pubmed/33227945 http://dx.doi.org/10.3390/biom10111570 |
_version_ | 1783615994309115904 |
---|---|
author | Ghislat, Ghita Rahman, Taufiq Ballester, Pedro J. |
author_facet | Ghislat, Ghita Rahman, Taufiq Ballester, Pedro J. |
author_sort | Ghislat, Ghita |
collection | PubMed |
description | Background and purpose: Identifying the macromolecular targets of drug molecules is a fundamental aspect of drug discovery and pharmacology. Several drugs remain without known targets (orphan) despite large-scale in silico and in vitro target prediction efforts. Ligand-centric chemical-similarity-based methods for in silico target prediction have been found to be particularly powerful, but the question remains of whether they are able to discover targets for target-orphan drugs. Experimental Approach: We used one of these in silico methods to carry out a target prediction analysis for two orphan drugs: actarit and malotilate. The top target predicted for each drug was carbonic anhydrase II (CAII). Each drug was therefore quantitatively evaluated for CAII inhibition to validate these two prospective predictions. Key Results: Actarit showed in vitro concentration-dependent inhibition of CAII activity with submicromolar potency (IC(50) = 422 nM) whilst no consistent inhibition was observed for malotilate. Among the other 25 targets predicted for actarit, RORγ (RAR-related orphan receptor-gamma) is promising in that it is strongly related to actarit’s indication, rheumatoid arthritis (RA). Conclusion and Implications: This study is a proof-of-concept of the utility of MolTarPred for the fast and cost-effective identification of targets of orphan drugs. Furthermore, the mechanism of action of actarit as an anti-RA agent can now be re-examined from a CAII-inhibitor perspective, given existing relationships between this target and RA. Moreover, the confirmed CAII-actarit association supports investigating the repositioning of actarit on other CAII-linked indications (e.g., hypertension, epilepsy, migraine, anemia and bone, eye and cardiac disorders). |
format | Online Article Text |
id | pubmed-7699199 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76991992020-11-29 Identification and Validation of Carbonic Anhydrase II as the First Target of the Anti-Inflammatory Drug Actarit Ghislat, Ghita Rahman, Taufiq Ballester, Pedro J. Biomolecules Article Background and purpose: Identifying the macromolecular targets of drug molecules is a fundamental aspect of drug discovery and pharmacology. Several drugs remain without known targets (orphan) despite large-scale in silico and in vitro target prediction efforts. Ligand-centric chemical-similarity-based methods for in silico target prediction have been found to be particularly powerful, but the question remains of whether they are able to discover targets for target-orphan drugs. Experimental Approach: We used one of these in silico methods to carry out a target prediction analysis for two orphan drugs: actarit and malotilate. The top target predicted for each drug was carbonic anhydrase II (CAII). Each drug was therefore quantitatively evaluated for CAII inhibition to validate these two prospective predictions. Key Results: Actarit showed in vitro concentration-dependent inhibition of CAII activity with submicromolar potency (IC(50) = 422 nM) whilst no consistent inhibition was observed for malotilate. Among the other 25 targets predicted for actarit, RORγ (RAR-related orphan receptor-gamma) is promising in that it is strongly related to actarit’s indication, rheumatoid arthritis (RA). Conclusion and Implications: This study is a proof-of-concept of the utility of MolTarPred for the fast and cost-effective identification of targets of orphan drugs. Furthermore, the mechanism of action of actarit as an anti-RA agent can now be re-examined from a CAII-inhibitor perspective, given existing relationships between this target and RA. Moreover, the confirmed CAII-actarit association supports investigating the repositioning of actarit on other CAII-linked indications (e.g., hypertension, epilepsy, migraine, anemia and bone, eye and cardiac disorders). MDPI 2020-11-19 /pmc/articles/PMC7699199/ /pubmed/33227945 http://dx.doi.org/10.3390/biom10111570 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ghislat, Ghita Rahman, Taufiq Ballester, Pedro J. Identification and Validation of Carbonic Anhydrase II as the First Target of the Anti-Inflammatory Drug Actarit |
title | Identification and Validation of Carbonic Anhydrase II as the First Target of the Anti-Inflammatory Drug Actarit |
title_full | Identification and Validation of Carbonic Anhydrase II as the First Target of the Anti-Inflammatory Drug Actarit |
title_fullStr | Identification and Validation of Carbonic Anhydrase II as the First Target of the Anti-Inflammatory Drug Actarit |
title_full_unstemmed | Identification and Validation of Carbonic Anhydrase II as the First Target of the Anti-Inflammatory Drug Actarit |
title_short | Identification and Validation of Carbonic Anhydrase II as the First Target of the Anti-Inflammatory Drug Actarit |
title_sort | identification and validation of carbonic anhydrase ii as the first target of the anti-inflammatory drug actarit |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7699199/ https://www.ncbi.nlm.nih.gov/pubmed/33227945 http://dx.doi.org/10.3390/biom10111570 |
work_keys_str_mv | AT ghislatghita identificationandvalidationofcarbonicanhydraseiiasthefirsttargetoftheantiinflammatorydrugactarit AT rahmantaufiq identificationandvalidationofcarbonicanhydraseiiasthefirsttargetoftheantiinflammatorydrugactarit AT ballesterpedroj identificationandvalidationofcarbonicanhydraseiiasthefirsttargetoftheantiinflammatorydrugactarit |