Cargando…
bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data
MOTIVATION: Normalization of single-cell RNA-sequencing (scRNA-seq) data is a prerequisite to their interpretation. The marked technical variability, high amounts of missing observations and batch effect typical of scRNA-seq datasets make this task particularly challenging. There is a need for an ef...
Autores principales: | Tang, Wenhao, Bertaux, François, Thomas, Philipp, Stefanelli, Claire, Saint, Malika, Marguerat, Samuel, Shahrezaei, Vahid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703772/ https://www.ncbi.nlm.nih.gov/pubmed/31584606 http://dx.doi.org/10.1093/bioinformatics/btz726 |
Ejemplares similares
-
Growth-rate-dependent and nutrient-specific gene expression resource allocation in fission yeast
por: Kleijn, Istvan T, et al.
Publicado: (2022) -
Division rate, cell size and proteome allocation: impact on gene expression noise and implications for the dynamics of genetic circuits
por: Bertaux, François, et al.
Publicado: (2018) -
Fission yeast obeys a linear size law under nutrient titration
por: Bertaux, François, et al.
Publicado: (2023) -
A bacterial size law revealed by a coarse-grained model of cell physiology
por: Bertaux, François, et al.
Publicado: (2020) -
Modelling capture efficiency of single-cell RNA-sequencing data improves inference of transcriptome-wide burst kinetics
por: Tang, Wenhao, et al.
Publicado: (2023)