Cargando…
Structural and functional characterization of M. tuberculosis sedoheptulose- 7-phosphate isomerase, a critical enzyme involved in lipopolysaccharide biosynthetic pathway
M. tuberculosis GmhA enzyme catalyzes the isomerization of D-sedoheptulose 7-phosphate into D-glycero-D-α-manno-heptose-7-phosphate in GDP-D-glycero-α-D-manno-heptose biosynthetic pathway. The D-glycero-α-D-manno-heptose is a major constituent of lipopolysaccharide and contributes to virulence and a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7705670/ https://www.ncbi.nlm.nih.gov/pubmed/33257730 http://dx.doi.org/10.1038/s41598-020-77230-8 |
_version_ | 1783616991141036032 |
---|---|
author | Karan, Sumita Pratap, Bhanu Yadav, Shiv Pratap Ashish, FNU Saxena, Ajay K. |
author_facet | Karan, Sumita Pratap, Bhanu Yadav, Shiv Pratap Ashish, FNU Saxena, Ajay K. |
author_sort | Karan, Sumita |
collection | PubMed |
description | M. tuberculosis GmhA enzyme catalyzes the isomerization of D-sedoheptulose 7-phosphate into D-glycero-D-α-manno-heptose-7-phosphate in GDP-D-glycero-α-D-manno-heptose biosynthetic pathway. The D-glycero-α-D-manno-heptose is a major constituent of lipopolysaccharide and contributes to virulence and antibiotic resistance to mycobacteria. In current study, we have performed the structural and biochemical analysis of M. tuberculosis GmhA, the first enzyme involved in D-sedoheptulose 7-phosphate isomerization in GDP-D-α-D-heptose biosynthetic pathway. The MtbGmhA enzyme exits as tetramer and small angle X-ray scattering analysis also yielded tetrameric envelope in solution. The MtbGmhA enzyme binds to D-sedoheptulose 7-phosphate with K(m) ~ 0.31 ± 0.06 mM(−1) and coverts it to D-glycero-D-α-manno-heptose-7-phosphate with catalytic efficiency (k(cat)/K(m)) ~ 1.45 mM(−1) s(−1). The residues involved in D-sedoheptulose 7-phosphate and Zn(2+) binding were identified using modeled MtbGmhA + D-sedoheptulose 7-phosphate + Zn(2+) structure. To understand the role in catalysis, six site directed mutants of MtbGmhA were generated, which showed significant decrease in catalytic activity. The circular dichroism analysis showed ~ 46% α-helix, ~ 19% β-sheet and ~ 35% random coil structures of MtbGmhA enzyme and melting temperature ~ 53.5 °C. Small angle X-ray scattering analysis showed the tetrameric envelope, which fitted well with modeled MtbGmhA tetramer in closed conformation. The MtbGmhA dynamics involved in D-sedoheptulose 7-phosphate and Zn(2+) binding was identified using dynamics simulation and showed enhanced stability in presence of these ligands. Our biochemical data and structural knowledge have provided insight into mechanism of action of MtbGmhA enzyme, which can be targeted for novel antibiotics development against M. tuberculosis. |
format | Online Article Text |
id | pubmed-7705670 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-77056702020-12-02 Structural and functional characterization of M. tuberculosis sedoheptulose- 7-phosphate isomerase, a critical enzyme involved in lipopolysaccharide biosynthetic pathway Karan, Sumita Pratap, Bhanu Yadav, Shiv Pratap Ashish, FNU Saxena, Ajay K. Sci Rep Article M. tuberculosis GmhA enzyme catalyzes the isomerization of D-sedoheptulose 7-phosphate into D-glycero-D-α-manno-heptose-7-phosphate in GDP-D-glycero-α-D-manno-heptose biosynthetic pathway. The D-glycero-α-D-manno-heptose is a major constituent of lipopolysaccharide and contributes to virulence and antibiotic resistance to mycobacteria. In current study, we have performed the structural and biochemical analysis of M. tuberculosis GmhA, the first enzyme involved in D-sedoheptulose 7-phosphate isomerization in GDP-D-α-D-heptose biosynthetic pathway. The MtbGmhA enzyme exits as tetramer and small angle X-ray scattering analysis also yielded tetrameric envelope in solution. The MtbGmhA enzyme binds to D-sedoheptulose 7-phosphate with K(m) ~ 0.31 ± 0.06 mM(−1) and coverts it to D-glycero-D-α-manno-heptose-7-phosphate with catalytic efficiency (k(cat)/K(m)) ~ 1.45 mM(−1) s(−1). The residues involved in D-sedoheptulose 7-phosphate and Zn(2+) binding were identified using modeled MtbGmhA + D-sedoheptulose 7-phosphate + Zn(2+) structure. To understand the role in catalysis, six site directed mutants of MtbGmhA were generated, which showed significant decrease in catalytic activity. The circular dichroism analysis showed ~ 46% α-helix, ~ 19% β-sheet and ~ 35% random coil structures of MtbGmhA enzyme and melting temperature ~ 53.5 °C. Small angle X-ray scattering analysis showed the tetrameric envelope, which fitted well with modeled MtbGmhA tetramer in closed conformation. The MtbGmhA dynamics involved in D-sedoheptulose 7-phosphate and Zn(2+) binding was identified using dynamics simulation and showed enhanced stability in presence of these ligands. Our biochemical data and structural knowledge have provided insight into mechanism of action of MtbGmhA enzyme, which can be targeted for novel antibiotics development against M. tuberculosis. Nature Publishing Group UK 2020-11-30 /pmc/articles/PMC7705670/ /pubmed/33257730 http://dx.doi.org/10.1038/s41598-020-77230-8 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Karan, Sumita Pratap, Bhanu Yadav, Shiv Pratap Ashish, FNU Saxena, Ajay K. Structural and functional characterization of M. tuberculosis sedoheptulose- 7-phosphate isomerase, a critical enzyme involved in lipopolysaccharide biosynthetic pathway |
title | Structural and functional characterization of M. tuberculosis sedoheptulose- 7-phosphate isomerase, a critical enzyme involved in lipopolysaccharide biosynthetic pathway |
title_full | Structural and functional characterization of M. tuberculosis sedoheptulose- 7-phosphate isomerase, a critical enzyme involved in lipopolysaccharide biosynthetic pathway |
title_fullStr | Structural and functional characterization of M. tuberculosis sedoheptulose- 7-phosphate isomerase, a critical enzyme involved in lipopolysaccharide biosynthetic pathway |
title_full_unstemmed | Structural and functional characterization of M. tuberculosis sedoheptulose- 7-phosphate isomerase, a critical enzyme involved in lipopolysaccharide biosynthetic pathway |
title_short | Structural and functional characterization of M. tuberculosis sedoheptulose- 7-phosphate isomerase, a critical enzyme involved in lipopolysaccharide biosynthetic pathway |
title_sort | structural and functional characterization of m. tuberculosis sedoheptulose- 7-phosphate isomerase, a critical enzyme involved in lipopolysaccharide biosynthetic pathway |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7705670/ https://www.ncbi.nlm.nih.gov/pubmed/33257730 http://dx.doi.org/10.1038/s41598-020-77230-8 |
work_keys_str_mv | AT karansumita structuralandfunctionalcharacterizationofmtuberculosissedoheptulose7phosphateisomeraseacriticalenzymeinvolvedinlipopolysaccharidebiosyntheticpathway AT pratapbhanu structuralandfunctionalcharacterizationofmtuberculosissedoheptulose7phosphateisomeraseacriticalenzymeinvolvedinlipopolysaccharidebiosyntheticpathway AT yadavshivpratap structuralandfunctionalcharacterizationofmtuberculosissedoheptulose7phosphateisomeraseacriticalenzymeinvolvedinlipopolysaccharidebiosyntheticpathway AT ashishfnu structuralandfunctionalcharacterizationofmtuberculosissedoheptulose7phosphateisomeraseacriticalenzymeinvolvedinlipopolysaccharidebiosyntheticpathway AT saxenaajayk structuralandfunctionalcharacterizationofmtuberculosissedoheptulose7phosphateisomeraseacriticalenzymeinvolvedinlipopolysaccharidebiosyntheticpathway |