Cargando…
Systems biology informed deep learning for inferring parameters and hidden dynamics
Mathematical models of biological reactions at the system-level lead to a set of ordinary differential equations with many unknown parameters that need to be inferred using relatively few experimental measurements. Having a reliable and robust algorithm for parameter inference and prediction of the...
Autores principales: | Yazdani, Alireza, Lu, Lu, Raissi, Maziar, Karniadakis, George Em |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710119/ https://www.ncbi.nlm.nih.gov/pubmed/33206658 http://dx.doi.org/10.1371/journal.pcbi.1007575 |
Ejemplares similares
-
Physics-informed neural networks for predicting gas flow dynamics and unknown parameters in diesel engines
por: Nath, Kamaljyoti, et al.
Publicado: (2023) -
Extraction of mechanical properties of materials through deep learning from instrumented indentation
por: Lu, Lu, et al.
Publicado: (2020) -
A General Shear-Dependent Model for Thrombus Formation
por: Yazdani, Alireza, et al.
Publicado: (2017) -
Deep transfer learning and data augmentation improve glucose levels prediction in type 2 diabetes patients
por: Deng, Yixiang, et al.
Publicado: (2021) -
G2Φnet: Relating genotype and biomechanical phenotype of tissues with deep learning
por: Zhang, Enrui, et al.
Publicado: (2022)