Cargando…

Directed differentiation into insulin-producing cells using microRNA manipulation

Our commentary is focused on three studies that used microRNA overexpression methods for directed differentiation of stem cells into insulin-producing cells. Islet transplantation is the only cell-based therapy used to treat type 1 diabetes mellitus. However, due to the scarcity of cadaveric donors...

Descripción completa

Detalles Bibliográficos
Autores principales: Williams, Michael D., Joglekar, Mugdha V., Hardikar, Anandwardhan A., Wong, Wilson K. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: De Gruyter 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7711856/
https://www.ncbi.nlm.nih.gov/pubmed/33336012
http://dx.doi.org/10.1515/med-2020-0170
Descripción
Sumario:Our commentary is focused on three studies that used microRNA overexpression methods for directed differentiation of stem cells into insulin-producing cells. Islet transplantation is the only cell-based therapy used to treat type 1 diabetes mellitus. However, due to the scarcity of cadaveric donors and limited availability of good quality and quantity of islets for transplant, alternate sources of insulin-producing cells are being studied and used by researchers. This commentary provides an overview of distinct studies focused on manipulating microRNA expression to optimize differentiation of embryonic stem cells or induced pluripotent stem cells into insulin-producing cells. These studies have used different approaches to overexpress microRNAs that are highly abundant in human islets (such as miR-375 and miR-7) in their differentiation protocol to achieve better differentiation into functional islet beta (β)-cells.