Cargando…

IGF-1 regulates the growth of fibroblasts and extracellular matrix deposition in pelvic organ prolapse

This study was carried out to observe the impact of insulin-like growth factor-1 (IGF-1) on human vaginal fibroblasts (HVFs) in the context of pelvic organ prolapse (POP) and to explore its effects on mitogen-activated protein kinases (MAPK) and nuclear factor-κB (NF-κB) signaling pathways. First, i...

Descripción completa

Detalles Bibliográficos
Autores principales: Yin, Yitong, Han, Ying, Shi, Chang, Xia, Zhijun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: De Gruyter 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712242/
https://www.ncbi.nlm.nih.gov/pubmed/33336041
http://dx.doi.org/10.1515/med-2020-0216
Descripción
Sumario:This study was carried out to observe the impact of insulin-like growth factor-1 (IGF-1) on human vaginal fibroblasts (HVFs) in the context of pelvic organ prolapse (POP) and to explore its effects on mitogen-activated protein kinases (MAPK) and nuclear factor-κB (NF-κB) signaling pathways. First, it was found that IGF-1 expression reduced in the vaginal wall tissues derived from POP compared to that in non-POP cases. Then the role of IGF-1 was explored in HVFs and thiazolyl blue tetrazolium bromide (MTT) and flow cytometry were used to detect cell viability and cell apoptosis. Western blot assay and quantitative real-time polymerase chain reaction were used to detect the protein and mRNA expression. The results showed that knockdown of IGF-1 inhibited the cell viability of HVFs, promoted the cell apoptosis of HVFs, and decreased the expression of types I and III collagen in HVFs, which was through inhibiting the expression of IGF-1 receptor and MAPK/NF-κB pathways. However, IGF-1 plasmid had the opposite effects on HVFs. In conclusion, our results showed that IGF-1 could activate MAPK and NF-κB pathways, thereby enhancing collagen metabolism and the growth of vaginal wall fibroblasts then to inhibit POP development.