Cargando…
Linear and Fisher Separability of Random Points in the d-Dimensional Spherical Layer and Inside the d-Dimensional Cube
Stochastic separation theorems play important roles in high-dimensional data analysis and machine learning. It turns out that in high dimensional space, any point of a random set of points can be separated from other points by a hyperplane with high probability, even if the number of points is expon...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712262/ https://www.ncbi.nlm.nih.gov/pubmed/33287049 http://dx.doi.org/10.3390/e22111281 |