Cargando…
Linear and Fisher Separability of Random Points in the d-Dimensional Spherical Layer and Inside the d-Dimensional Cube
Stochastic separation theorems play important roles in high-dimensional data analysis and machine learning. It turns out that in high dimensional space, any point of a random set of points can be separated from other points by a hyperplane with high probability, even if the number of points is expon...
Autores principales: | Sidorov, Sergey, Zolotykh, Nikolai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712262/ https://www.ncbi.nlm.nih.gov/pubmed/33287049 http://dx.doi.org/10.3390/e22111281 |
Ejemplares similares
-
Combined application of isotropic three-dimensional fast spin echo (3D-FSE-Cube) with 2-point Dixon fat/water separation (FLEX) and 3D-FSE-cube in MR dacryocystography
por: Liu, Ping, et al.
Publicado: (2019) -
Cubes to Cubes: Organization of MgO Particles into
One-Dimensional and Two-Dimensional Nanostructures
por: Thomele, Daniel, et al.
Publicado: (2021) -
Inside Rubik’s cube and beyond
por: Bandelow, Christoph
Publicado: (1982) -
Rosenblatt’s First Theorem and Frugality of Deep Learning
por: Kirdin, Alexander, et al.
Publicado: (2022) -
The Listening Cube: A Three Dimensional Auditory Training Program
por: Leo, De Raeve, et al.
Publicado: (2012)