Cargando…

Linear and Fisher Separability of Random Points in the d-Dimensional Spherical Layer and Inside the d-Dimensional Cube

Stochastic separation theorems play important roles in high-dimensional data analysis and machine learning. It turns out that in high dimensional space, any point of a random set of points can be separated from other points by a hyperplane with high probability, even if the number of points is expon...

Descripción completa

Detalles Bibliográficos
Autores principales: Sidorov, Sergey, Zolotykh, Nikolai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712262/
https://www.ncbi.nlm.nih.gov/pubmed/33287049
http://dx.doi.org/10.3390/e22111281

Ejemplares similares