Cargando…
TBIO-26. NON-CANONICAL OPEN READING FRAMES ENCODE FUNCTIONAL PROTEINS ESSENTIAL FOR CANCER CELL SURVIVAL
The brain is the foremost non-gonadal tissue for expression of non-coding RNAs of unclear function. Yet, whether such transcripts are truly non-coding or rather the source of non-canonical protein translation is unknown. Here, we used functional genomic screens to establish the cellular bioactivity...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7715501/ http://dx.doi.org/10.1093/neuonc/noaa222.849 |
Sumario: | The brain is the foremost non-gonadal tissue for expression of non-coding RNAs of unclear function. Yet, whether such transcripts are truly non-coding or rather the source of non-canonical protein translation is unknown. Here, we used functional genomic screens to establish the cellular bioactivity of non-canonical proteins located in putative non-coding RNAs or untranslated regions of protein-coding genes. We experimentally interrogated 553 open reading frames (ORFs) identified by ribosome profiling for three major phenotypes: 257 (46%) demonstrated protein translation when ectopically expressed in HEK293T cells, 401 (73%) induced gene expression changes following ectopic expression across 4 cancer cell types, and 57 (10%) induced a viability defect when the endogenous ORF was knocked out using CRISPR/Cas9 in 8 human cancer cell lines. CRISPR tiling and start codon mutagenesis indicated that the biological impact of these non-canonical ORFs required their translation as opposed to RNA-mediated effects. We functionally characterized one of these ORFs, G029442—renamed GREP1 (Glycine-Rich Extracellular Protein-1)—as a cancer-implicated gene with high expression in multiple cancer types, such as gliomas. GREP1 knockout in >200 cancer cell lines reduced cell viability in multiple cancer types, including glioblastoma, in a cell-autonomous manner and produced cell cycle arrest via single-cell RNA sequencing. Analysis of the secretome of GREP1-expressing cells showed increased abundance of the oncogenic cytokine GDF15, and GDF15 supplementation mitigated the growth inhibitory effect of GREP1 knock-out. Taken together, these experiments suggest that the non-canonical ORFeome is surprisingly rich in biologically active proteins and potential cancer therapeutic targets deserving of further study. |
---|