Cargando…

Caffeine Timing Improves Lower-Body Muscular Performance: A Randomized Trial

Little is known about the optimal time to consume caffeine prior to exercise to maximize the ergogenic benefits of the substance. Purpose: To determine the optimal pre-exercise time interval to consume caffeine to improve lower-body muscular performance. A secondary aim was to identify the presence...

Descripción completa

Detalles Bibliográficos
Autores principales: Harty, Patrick S., Zabriskie, Hannah A., Stecker, Richard A., Currier, Brad S., Tinsley, Grant M., Surowiec, Kazimierz, Jagim, Andrew R., Richmond, Scott R., Kerksick, Chad M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7719671/
https://www.ncbi.nlm.nih.gov/pubmed/33330586
http://dx.doi.org/10.3389/fnut.2020.585900
_version_ 1783619722959388672
author Harty, Patrick S.
Zabriskie, Hannah A.
Stecker, Richard A.
Currier, Brad S.
Tinsley, Grant M.
Surowiec, Kazimierz
Jagim, Andrew R.
Richmond, Scott R.
Kerksick, Chad M.
author_facet Harty, Patrick S.
Zabriskie, Hannah A.
Stecker, Richard A.
Currier, Brad S.
Tinsley, Grant M.
Surowiec, Kazimierz
Jagim, Andrew R.
Richmond, Scott R.
Kerksick, Chad M.
author_sort Harty, Patrick S.
collection PubMed
description Little is known about the optimal time to consume caffeine prior to exercise to maximize the ergogenic benefits of the substance. Purpose: To determine the optimal pre-exercise time interval to consume caffeine to improve lower-body muscular performance. A secondary aim was to identify the presence of any sex differences in responses to timed caffeine administration. Methods: Healthy, resistance-trained males (n = 18; Mean±SD; Age: 25.1 ± 5.7 years; Height: 178.4 ± 7.1 cm; Body mass: 91.3 ± 13.5 kg; Percent body fat: 20.7 ± 5.2; Average caffeine consumption: 146.6 ± 100.3 mg/day) and females (n = 11; Mean ± SD; Age: 20.1 ± 1.6 years; Height: 165.0 ± 8.8 cm; Body mass: 65.8 ± 10.0 kg; Percent bodyfat: 25.8 ± 4.2; Average caffeine consumption: 111.8 ± 91.7 mg/day) participated in this investigation. In a randomized, double-blind, placebo-controlled, crossover fashion, participants consumed 6 mg·kg(−1) caffeine or placebo solution at three time points: 2 h prior (2H), 1 h prior (1H), or 30 min prior (30M) to exercise testing. During three visits, caffeine was randomly administered at one time point, and placebo was administered at the other two time points. During one visit, placebo was administered at all three time points. Next, participants performed isometric mid-thigh pulls (IMTP), countermovement vertical jumps (CMVJ), and isometric/isokinetic knee extensor testing (ISO/ISOK). Results: Caffeine administered at 1H significantly improved absolute CMVJ and ISO performance relative to placebo. Mean CMVJ jump height was significantly higher during 1H compared to 30M. However, only caffeine administered at 30M significantly improved absolute measures of isokinetic performance. Analysis of the pooled caffeine conditions revealed that muscular performance was more consistently augmented by caffeine in males compared to females. Conclusions: Pre-exercise caffeine timing significantly modulated participant responses to the substance, with 1H exerting the most consistent ergogenic benefits relative to other time points, particularly compared to 2H. Male participants were found to respond more consistently to caffeine compared to female participants. These results suggest that active individuals can maximize the ergogenic effects of caffeine by consuming the substance ~1 h prior to the point when peak muscular performance is desired.
format Online
Article
Text
id pubmed-7719671
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-77196712020-12-15 Caffeine Timing Improves Lower-Body Muscular Performance: A Randomized Trial Harty, Patrick S. Zabriskie, Hannah A. Stecker, Richard A. Currier, Brad S. Tinsley, Grant M. Surowiec, Kazimierz Jagim, Andrew R. Richmond, Scott R. Kerksick, Chad M. Front Nutr Nutrition Little is known about the optimal time to consume caffeine prior to exercise to maximize the ergogenic benefits of the substance. Purpose: To determine the optimal pre-exercise time interval to consume caffeine to improve lower-body muscular performance. A secondary aim was to identify the presence of any sex differences in responses to timed caffeine administration. Methods: Healthy, resistance-trained males (n = 18; Mean±SD; Age: 25.1 ± 5.7 years; Height: 178.4 ± 7.1 cm; Body mass: 91.3 ± 13.5 kg; Percent body fat: 20.7 ± 5.2; Average caffeine consumption: 146.6 ± 100.3 mg/day) and females (n = 11; Mean ± SD; Age: 20.1 ± 1.6 years; Height: 165.0 ± 8.8 cm; Body mass: 65.8 ± 10.0 kg; Percent bodyfat: 25.8 ± 4.2; Average caffeine consumption: 111.8 ± 91.7 mg/day) participated in this investigation. In a randomized, double-blind, placebo-controlled, crossover fashion, participants consumed 6 mg·kg(−1) caffeine or placebo solution at three time points: 2 h prior (2H), 1 h prior (1H), or 30 min prior (30M) to exercise testing. During three visits, caffeine was randomly administered at one time point, and placebo was administered at the other two time points. During one visit, placebo was administered at all three time points. Next, participants performed isometric mid-thigh pulls (IMTP), countermovement vertical jumps (CMVJ), and isometric/isokinetic knee extensor testing (ISO/ISOK). Results: Caffeine administered at 1H significantly improved absolute CMVJ and ISO performance relative to placebo. Mean CMVJ jump height was significantly higher during 1H compared to 30M. However, only caffeine administered at 30M significantly improved absolute measures of isokinetic performance. Analysis of the pooled caffeine conditions revealed that muscular performance was more consistently augmented by caffeine in males compared to females. Conclusions: Pre-exercise caffeine timing significantly modulated participant responses to the substance, with 1H exerting the most consistent ergogenic benefits relative to other time points, particularly compared to 2H. Male participants were found to respond more consistently to caffeine compared to female participants. These results suggest that active individuals can maximize the ergogenic effects of caffeine by consuming the substance ~1 h prior to the point when peak muscular performance is desired. Frontiers Media S.A. 2020-11-23 /pmc/articles/PMC7719671/ /pubmed/33330586 http://dx.doi.org/10.3389/fnut.2020.585900 Text en Copyright © 2020 Harty, Zabriskie, Stecker, Currier, Tinsley, Surowiec, Jagim, Richmond and Kerksick. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Nutrition
Harty, Patrick S.
Zabriskie, Hannah A.
Stecker, Richard A.
Currier, Brad S.
Tinsley, Grant M.
Surowiec, Kazimierz
Jagim, Andrew R.
Richmond, Scott R.
Kerksick, Chad M.
Caffeine Timing Improves Lower-Body Muscular Performance: A Randomized Trial
title Caffeine Timing Improves Lower-Body Muscular Performance: A Randomized Trial
title_full Caffeine Timing Improves Lower-Body Muscular Performance: A Randomized Trial
title_fullStr Caffeine Timing Improves Lower-Body Muscular Performance: A Randomized Trial
title_full_unstemmed Caffeine Timing Improves Lower-Body Muscular Performance: A Randomized Trial
title_short Caffeine Timing Improves Lower-Body Muscular Performance: A Randomized Trial
title_sort caffeine timing improves lower-body muscular performance: a randomized trial
topic Nutrition
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7719671/
https://www.ncbi.nlm.nih.gov/pubmed/33330586
http://dx.doi.org/10.3389/fnut.2020.585900
work_keys_str_mv AT hartypatricks caffeinetimingimproveslowerbodymuscularperformancearandomizedtrial
AT zabriskiehannaha caffeinetimingimproveslowerbodymuscularperformancearandomizedtrial
AT steckerricharda caffeinetimingimproveslowerbodymuscularperformancearandomizedtrial
AT currierbrads caffeinetimingimproveslowerbodymuscularperformancearandomizedtrial
AT tinsleygrantm caffeinetimingimproveslowerbodymuscularperformancearandomizedtrial
AT surowieckazimierz caffeinetimingimproveslowerbodymuscularperformancearandomizedtrial
AT jagimandrewr caffeinetimingimproveslowerbodymuscularperformancearandomizedtrial
AT richmondscottr caffeinetimingimproveslowerbodymuscularperformancearandomizedtrial
AT kerksickchadm caffeinetimingimproveslowerbodymuscularperformancearandomizedtrial