Cargando…
Efficient viral delivery of Cas9 into human safe harbor
Gene editing using CRISPR/Cas9 is a promising method to cure many human genetic diseases. We have developed an efficient system to deliver Cas9 into the adeno-associated virus integration site 1 (AAVS1) locus, known as a safe harbor, using lentivirus and AAV viral vectors, as a step toward future in...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7722726/ https://www.ncbi.nlm.nih.gov/pubmed/33293588 http://dx.doi.org/10.1038/s41598-020-78450-8 |
_version_ | 1783620210782109696 |
---|---|
author | Hayashi, Hideki Kubo, Yoshinao Izumida, Mai Matsuyama, Toshifumi |
author_facet | Hayashi, Hideki Kubo, Yoshinao Izumida, Mai Matsuyama, Toshifumi |
author_sort | Hayashi, Hideki |
collection | PubMed |
description | Gene editing using CRISPR/Cas9 is a promising method to cure many human genetic diseases. We have developed an efficient system to deliver Cas9 into the adeno-associated virus integration site 1 (AAVS1) locus, known as a safe harbor, using lentivirus and AAV viral vectors, as a step toward future in vivo transduction. First, we introduced Cas9v1 (derived from Streptococcus pyogenes) at random into the genome using a lentiviral vector. Cas9v1 activity was used when the N-terminal 1.9 kb, and C-terminal 2.3 kb fragments of another Cas9v2 (human codon-optimized) were employed sequentially with specific single-guide RNAs (sgRNAs) and homology donors carried by AAV vectors into the AAVS1 locus. Then, Cas9v1 was removed from the genome by another AAV vector containing sgRNA targeting the long terminal repeat of the lentivirus vector. The reconstituted Cas9v2 in the AAVS1 locus was functional and gene editing was efficient. |
format | Online Article Text |
id | pubmed-7722726 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-77227262020-12-09 Efficient viral delivery of Cas9 into human safe harbor Hayashi, Hideki Kubo, Yoshinao Izumida, Mai Matsuyama, Toshifumi Sci Rep Article Gene editing using CRISPR/Cas9 is a promising method to cure many human genetic diseases. We have developed an efficient system to deliver Cas9 into the adeno-associated virus integration site 1 (AAVS1) locus, known as a safe harbor, using lentivirus and AAV viral vectors, as a step toward future in vivo transduction. First, we introduced Cas9v1 (derived from Streptococcus pyogenes) at random into the genome using a lentiviral vector. Cas9v1 activity was used when the N-terminal 1.9 kb, and C-terminal 2.3 kb fragments of another Cas9v2 (human codon-optimized) were employed sequentially with specific single-guide RNAs (sgRNAs) and homology donors carried by AAV vectors into the AAVS1 locus. Then, Cas9v1 was removed from the genome by another AAV vector containing sgRNA targeting the long terminal repeat of the lentivirus vector. The reconstituted Cas9v2 in the AAVS1 locus was functional and gene editing was efficient. Nature Publishing Group UK 2020-12-08 /pmc/articles/PMC7722726/ /pubmed/33293588 http://dx.doi.org/10.1038/s41598-020-78450-8 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Hayashi, Hideki Kubo, Yoshinao Izumida, Mai Matsuyama, Toshifumi Efficient viral delivery of Cas9 into human safe harbor |
title | Efficient viral delivery of Cas9 into human safe harbor |
title_full | Efficient viral delivery of Cas9 into human safe harbor |
title_fullStr | Efficient viral delivery of Cas9 into human safe harbor |
title_full_unstemmed | Efficient viral delivery of Cas9 into human safe harbor |
title_short | Efficient viral delivery of Cas9 into human safe harbor |
title_sort | efficient viral delivery of cas9 into human safe harbor |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7722726/ https://www.ncbi.nlm.nih.gov/pubmed/33293588 http://dx.doi.org/10.1038/s41598-020-78450-8 |
work_keys_str_mv | AT hayashihideki efficientviraldeliveryofcas9intohumansafeharbor AT kuboyoshinao efficientviraldeliveryofcas9intohumansafeharbor AT izumidamai efficientviraldeliveryofcas9intohumansafeharbor AT matsuyamatoshifumi efficientviraldeliveryofcas9intohumansafeharbor |