Cargando…
A machine learning toolkit for genetic engineering attribution to facilitate biosecurity
The promise of biotechnology is tempered by its potential for accidental or deliberate misuse. Reliably identifying telltale signatures characteristic to different genetic designers, termed ‘genetic engineering attribution’, would deter misuse, yet is still considered unsolved. Here, we show that re...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7722865/ https://www.ncbi.nlm.nih.gov/pubmed/33293535 http://dx.doi.org/10.1038/s41467-020-19612-0 |