Cargando…
A machine learning toolkit for genetic engineering attribution to facilitate biosecurity
The promise of biotechnology is tempered by its potential for accidental or deliberate misuse. Reliably identifying telltale signatures characteristic to different genetic designers, termed ‘genetic engineering attribution’, would deter misuse, yet is still considered unsolved. Here, we show that re...
Autores principales: | Alley, Ethan C., Turpin, Miles, Liu, Andrew Bo, Kulp-McDowall, Taylor, Swett, Jacob, Edison, Rey, Von Stetina, Stephen E., Church, George M., Esvelt, Kevin M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7722865/ https://www.ncbi.nlm.nih.gov/pubmed/33293535 http://dx.doi.org/10.1038/s41467-020-19612-0 |
Ejemplares similares
-
The biosecurity benefits of genetic engineering attribution
por: Lewis, Gregory, et al.
Publicado: (2020) -
Analysis of the first genetic engineering attribution challenge
por: Crook, Oliver M., et al.
Publicado: (2022) -
Insidious Insights: Implications of viral vector engineering for pathogen enhancement
por: Sandbrink, Jonas B., et al.
Publicado: (2022) -
An internet-based bioinformatics toolkit for plant biosecurity diagnosis and surveillance of viruses and viroids
por: Barrero, Roberto A., et al.
Publicado: (2017) -
Novel Dutch Self-Assessment Biosecurity Toolkit to Identify Biorisk Gaps and to Enhance Biorisk Awareness
por: Sijnesael, Petra C. C., et al.
Publicado: (2014)