Cargando…
Predicting materials properties without crystal structure: deep representation learning from stoichiometry
Machine learning has the potential to accelerate materials discovery by accurately predicting materials properties at a low computational cost. However, the model inputs remain a key stumbling block. Current methods typically use descriptors constructed from knowledge of either the full crystal stru...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7722901/ https://www.ncbi.nlm.nih.gov/pubmed/33293567 http://dx.doi.org/10.1038/s41467-020-19964-7 |