Cargando…
Predicting materials properties without crystal structure: deep representation learning from stoichiometry
Machine learning has the potential to accelerate materials discovery by accurately predicting materials properties at a low computational cost. However, the model inputs remain a key stumbling block. Current methods typically use descriptors constructed from knowledge of either the full crystal stru...
Autores principales: | Goodall, Rhys E. A., Lee, Alpha A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7722901/ https://www.ncbi.nlm.nih.gov/pubmed/33293567 http://dx.doi.org/10.1038/s41467-020-19964-7 |
Ejemplares similares
-
Material symmetry recognition and property prediction accomplished by crystal capsule representation
por: Liang, Chao, et al.
Publicado: (2023) -
3-D Inorganic Crystal Structure Generation
and Property Prediction via Representation Learning
por: Court, Callum J., et al.
Publicado: (2020) -
Deep Learning-Based
Prediction of Contact Maps and
Crystal Structures of Inorganic Materials
por: Hu, Jianjun, et al.
Publicado: (2023) -
Rapid discovery of stable materials by coordinate-free coarse graining
por: Goodall, Rhys E. A., et al.
Publicado: (2022) -
An invertible, invariant crystal representation for inverse design of solid-state materials using generative deep learning
por: Xiao, Hang, et al.
Publicado: (2023)