Cargando…
An intact membrane is essential for small extracellular vesicle‐induced modulation of α‐synuclein fibrillization
The misfolding and fibrillization of the protein, α‐synuclein (αsyn), is associated with neurodegenerative disorders referred to as the synucleinopathies. Understanding the mechanisms of αsyn misfolding is an important area of interest given that αsyn misfolding contributes to disease pathogenesis....
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7726797/ https://www.ncbi.nlm.nih.gov/pubmed/33318779 http://dx.doi.org/10.1002/jev2.12034 |
_version_ | 1783620957247635456 |
---|---|
author | Ugalde, Cathryn L. Gordon, Shane E. Shambrook, Mitch Nasiri Kenari, Amirmohammad Coleman, Bradley M. Perugini, Matthew A. Lawson, Victoria A. Finkelstein, David I. Hill, Andrew F. |
author_facet | Ugalde, Cathryn L. Gordon, Shane E. Shambrook, Mitch Nasiri Kenari, Amirmohammad Coleman, Bradley M. Perugini, Matthew A. Lawson, Victoria A. Finkelstein, David I. Hill, Andrew F. |
author_sort | Ugalde, Cathryn L. |
collection | PubMed |
description | The misfolding and fibrillization of the protein, α‐synuclein (αsyn), is associated with neurodegenerative disorders referred to as the synucleinopathies. Understanding the mechanisms of αsyn misfolding is an important area of interest given that αsyn misfolding contributes to disease pathogenesis. While many studies report the ability of synthetic lipid membranes to modulate αsyn folding, there is little data pertaining to the mechanism(s) of this interaction. αSyn has previously been shown to associate with small lipid vesicles released by cells called extracellular vesicles (EVs) and it is postulated these interactions may assist in the spreading of pathological forms of this protein. Together, this presents the need for robust characterisation studies on αsyn fibrillization using biologically‐derived vesicles. In this study, we comprehensively characterised the ability of lipid‐rich small extracellular vesicles (sEVs) to alter the misfolding of αsyn induced using the Protein Misfolding Cyclic Amplification (PMCA) assay. The biochemical and biophysical properties of misfolded αsyn were examined using a range of techniques including: Thioflavin T fluorescence, transmission electron microscopy, analytical centrifugation and western immunoblot coupled with protease resistance assays and soluble/insoluble fractionation. We show that sEVs cause an acceleration in αsyn fibrillization and provide comprehensive evidence that this results in an increase in the abundance of mature insoluble fibrillar species. In order to elucidate the relevance of the lipid membrane to this interaction, sEV lipid membranes were modified by treatment with methanol, or a combination of methanol and sarkosyl. These treatments altered the ultrastructure of the sEVs without changing the protein cargo. Critically, these modified sEVs had a reduced ability to influence αsyn fibrillization compared to untreated counterparts. This study reports the first comprehensive examination of αsyn:EV interactions and demonstrates that sEVs are powerful modulators of αsyn fibrillization, which is mediated by the sEV membrane. In doing so, this work provides strong evidence for a role of sEVs in contributing directly to αsyn misfolding in the synucleinopathy disorders. |
format | Online Article Text |
id | pubmed-7726797 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-77267972020-12-13 An intact membrane is essential for small extracellular vesicle‐induced modulation of α‐synuclein fibrillization Ugalde, Cathryn L. Gordon, Shane E. Shambrook, Mitch Nasiri Kenari, Amirmohammad Coleman, Bradley M. Perugini, Matthew A. Lawson, Victoria A. Finkelstein, David I. Hill, Andrew F. J Extracell Vesicles Research Articles The misfolding and fibrillization of the protein, α‐synuclein (αsyn), is associated with neurodegenerative disorders referred to as the synucleinopathies. Understanding the mechanisms of αsyn misfolding is an important area of interest given that αsyn misfolding contributes to disease pathogenesis. While many studies report the ability of synthetic lipid membranes to modulate αsyn folding, there is little data pertaining to the mechanism(s) of this interaction. αSyn has previously been shown to associate with small lipid vesicles released by cells called extracellular vesicles (EVs) and it is postulated these interactions may assist in the spreading of pathological forms of this protein. Together, this presents the need for robust characterisation studies on αsyn fibrillization using biologically‐derived vesicles. In this study, we comprehensively characterised the ability of lipid‐rich small extracellular vesicles (sEVs) to alter the misfolding of αsyn induced using the Protein Misfolding Cyclic Amplification (PMCA) assay. The biochemical and biophysical properties of misfolded αsyn were examined using a range of techniques including: Thioflavin T fluorescence, transmission electron microscopy, analytical centrifugation and western immunoblot coupled with protease resistance assays and soluble/insoluble fractionation. We show that sEVs cause an acceleration in αsyn fibrillization and provide comprehensive evidence that this results in an increase in the abundance of mature insoluble fibrillar species. In order to elucidate the relevance of the lipid membrane to this interaction, sEV lipid membranes were modified by treatment with methanol, or a combination of methanol and sarkosyl. These treatments altered the ultrastructure of the sEVs without changing the protein cargo. Critically, these modified sEVs had a reduced ability to influence αsyn fibrillization compared to untreated counterparts. This study reports the first comprehensive examination of αsyn:EV interactions and demonstrates that sEVs are powerful modulators of αsyn fibrillization, which is mediated by the sEV membrane. In doing so, this work provides strong evidence for a role of sEVs in contributing directly to αsyn misfolding in the synucleinopathy disorders. John Wiley and Sons Inc. 2020-12-10 2020-12 /pmc/articles/PMC7726797/ /pubmed/33318779 http://dx.doi.org/10.1002/jev2.12034 Text en © 2020 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals LLC on behalf of International Society for Extracellular Vesicles This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Ugalde, Cathryn L. Gordon, Shane E. Shambrook, Mitch Nasiri Kenari, Amirmohammad Coleman, Bradley M. Perugini, Matthew A. Lawson, Victoria A. Finkelstein, David I. Hill, Andrew F. An intact membrane is essential for small extracellular vesicle‐induced modulation of α‐synuclein fibrillization |
title | An intact membrane is essential for small extracellular vesicle‐induced modulation of α‐synuclein fibrillization |
title_full | An intact membrane is essential for small extracellular vesicle‐induced modulation of α‐synuclein fibrillization |
title_fullStr | An intact membrane is essential for small extracellular vesicle‐induced modulation of α‐synuclein fibrillization |
title_full_unstemmed | An intact membrane is essential for small extracellular vesicle‐induced modulation of α‐synuclein fibrillization |
title_short | An intact membrane is essential for small extracellular vesicle‐induced modulation of α‐synuclein fibrillization |
title_sort | intact membrane is essential for small extracellular vesicle‐induced modulation of α‐synuclein fibrillization |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7726797/ https://www.ncbi.nlm.nih.gov/pubmed/33318779 http://dx.doi.org/10.1002/jev2.12034 |
work_keys_str_mv | AT ugaldecathrynl anintactmembraneisessentialforsmallextracellularvesicleinducedmodulationofasynucleinfibrillization AT gordonshanee anintactmembraneisessentialforsmallextracellularvesicleinducedmodulationofasynucleinfibrillization AT shambrookmitch anintactmembraneisessentialforsmallextracellularvesicleinducedmodulationofasynucleinfibrillization AT nasirikenariamirmohammad anintactmembraneisessentialforsmallextracellularvesicleinducedmodulationofasynucleinfibrillization AT colemanbradleym anintactmembraneisessentialforsmallextracellularvesicleinducedmodulationofasynucleinfibrillization AT peruginimatthewa anintactmembraneisessentialforsmallextracellularvesicleinducedmodulationofasynucleinfibrillization AT lawsonvictoriaa anintactmembraneisessentialforsmallextracellularvesicleinducedmodulationofasynucleinfibrillization AT finkelsteindavidi anintactmembraneisessentialforsmallextracellularvesicleinducedmodulationofasynucleinfibrillization AT hillandrewf anintactmembraneisessentialforsmallextracellularvesicleinducedmodulationofasynucleinfibrillization AT ugaldecathrynl intactmembraneisessentialforsmallextracellularvesicleinducedmodulationofasynucleinfibrillization AT gordonshanee intactmembraneisessentialforsmallextracellularvesicleinducedmodulationofasynucleinfibrillization AT shambrookmitch intactmembraneisessentialforsmallextracellularvesicleinducedmodulationofasynucleinfibrillization AT nasirikenariamirmohammad intactmembraneisessentialforsmallextracellularvesicleinducedmodulationofasynucleinfibrillization AT colemanbradleym intactmembraneisessentialforsmallextracellularvesicleinducedmodulationofasynucleinfibrillization AT peruginimatthewa intactmembraneisessentialforsmallextracellularvesicleinducedmodulationofasynucleinfibrillization AT lawsonvictoriaa intactmembraneisessentialforsmallextracellularvesicleinducedmodulationofasynucleinfibrillization AT finkelsteindavidi intactmembraneisessentialforsmallextracellularvesicleinducedmodulationofasynucleinfibrillization AT hillandrewf intactmembraneisessentialforsmallextracellularvesicleinducedmodulationofasynucleinfibrillization |