Cargando…

A bispecific T cell engager targeting Glypican-1 redirects T cell cytolytic activity to kill prostate cancer cells

BACKGROUND: Glypican-1 is a heparan sulfate proteoglycan that is overexpressed in prostate cancer (PCa), and a variety of solid tumors. Importantly, expression is restricted in normal tissue, making it an ideal tumor targeting antigen. Since there is clinical and preclinical evidence of the efficacy...

Descripción completa

Detalles Bibliográficos
Autores principales: Lund, Maria E., Howard, Christopher B., Thurecht, Kristofer J., Campbell, Douglas H., Mahler, Stephen M., Walsh, Bradley J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7727117/
https://www.ncbi.nlm.nih.gov/pubmed/33302918
http://dx.doi.org/10.1186/s12885-020-07562-1
Descripción
Sumario:BACKGROUND: Glypican-1 is a heparan sulfate proteoglycan that is overexpressed in prostate cancer (PCa), and a variety of solid tumors. Importantly, expression is restricted in normal tissue, making it an ideal tumor targeting antigen. Since there is clinical and preclinical evidence of the efficacy of Bispecific T cell Engager (BiTE) therapy in PCa, we sought to produce and test the efficacy of a GPC-1 targeted BiTE construct based on the Miltuximab(®) sequence. Miltuximab(®) is a clinical stage anti-GPC-1 antibody that has proven safe in first in human trials. METHODS: The single chain variable fragment (scFv) of Miltuximab(®) and the CD3 binding sequence of Blinatumomab were combined in a standard BiTE format. Binding of the construct to immobilised recombinant CD3 and GPC-1 antigens was assessed by ELISA and BiaCore, and binding to cell surface-expressed antigens was measured by flow cytometry. The ability of MIL-38-CD3 to activate T cells was assessed using in vitro co-culture assays with tumour cell lines of varying GPC-1 expression by measurement of CD69 and CD25 expression, before cytolytic activity was assessed in a similar co-culture. The release of inflammatory cytokines from T cells was measured by ELISA and expression of PD-1 on the T cell surface was measured by flow cytometry. RESULTS: Binding activity of MIL-38-CD3 to both cell surface-expressed and immobilised recombinant GPC-1 and CD3 was retained. MIL-38-CD3 was able to mediate the activation of peripheral blood T cells from healthy individuals, resulting in the release of inflammatory cytokines TNF and IFN-g. Activation was reliant on GPC-1 expression as MIL-38-CD3 mediated only low level T cell activation in the presence of C3 cells (constitutively low GPC-1 expression). Activated T cells were redirected to lyse PCa cell lines PC3 and DU-145 (GPC-1 moderate or high expression, respectively) but could not kill GPC-1 negative Raji cells. The expression of PD-1 was up-regulated on the surface of MIL-38-CD3 activated T cells, suggesting potential for synergy with checkpoint inhibition. CONCLUSIONS: This study reports preclinical findings into the efficacy of targeting GPC-1 in PCa with BiTE construct MIL-38-CD3. We show the specificity and efficacy of the construct, supporting its further preclinical development. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12885-020-07562-1.