Cargando…
An approach to predicting patient experience through machine learning and social network analysis
OBJECTIVE: Improving the patient experience has become an essential component of any healthcare system’s performance metrics portfolio. In this study, we developed a machine learning model to predict a patient’s response to the Hospital Consumer Assessment of Healthcare Providers and Systems survey’...
Autores principales: | Bari, Vitej, Hirsch, Jamie S, Narvaez, Joseph, Sardinia, Robert, Bock, Kevin R, Oppenheim, Michael I, Meytlis, Marsha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7727354/ https://www.ncbi.nlm.nih.gov/pubmed/33104210 http://dx.doi.org/10.1093/jamia/ocaa194 |
Ejemplares similares
-
Let Sleeping Patients Lie, avoiding unnecessary overnight vitals monitoring using a clinically based deep-learning model
por: Tóth, Viktor, et al.
Publicado: (2020) -
Application of a Machine Learning Algorithm to Develop and Validate a Prediction Model for Ambulatory Non-Arrivals
por: Coppa, Kevin, et al.
Publicado: (2023) -
From leaves to labels: Building modular machine learning networks for rapid herbarium specimen analysis with LeafMachine2
por: Weaver, William N., et al.
Publicado: (2023) -
Detecting diabetic retinopathy through machine learning on electronic health record data from an urban, safety net healthcare system
por: Ogunyemi, Omolola I, et al.
Publicado: (2021) -
Unsupervised machine learning and prognostic factors of survival in chronic lymphocytic leukemia
por: Coombes, Caitlin E, et al.
Publicado: (2020)