Cargando…
Synthesis and Conformational Analysis of Fluorinated Uridine Analogues Provide Insight into a Neighbouring-Group Participation Mechanism
Fluorinated nucleoside analogues have attracted much attention as anticancer and antiviral agents and as probes for enzymatic function. However, the lack of direct synthetic methods, especially for 2′,3′-dideoxy-2′,3′-difluoro nucleosides, hamper their practical utility. In order to design more effi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7728060/ https://www.ncbi.nlm.nih.gov/pubmed/33255573 http://dx.doi.org/10.3390/molecules25235513 |
Sumario: | Fluorinated nucleoside analogues have attracted much attention as anticancer and antiviral agents and as probes for enzymatic function. However, the lack of direct synthetic methods, especially for 2′,3′-dideoxy-2′,3′-difluoro nucleosides, hamper their practical utility. In order to design more efficient synthetic methods, a better understanding of the conformation and mechanism of formation of these molecules is important. Herein, we report the synthesis and conformational analysis of a 2′,3′-dideoxy-2′,3′-difluoro and a 2′-deoxy-2′-fluoro uridine derivative and provide an insight into the reaction mechanism. We suggest that the transformation most likely diverges from the S(N)1 or S(N)2 pathway, but instead operates via a neighbouring-group participation mechanism. |
---|