Cargando…
A novel interaction between soluble epoxide hydrolase and the AT1 receptor in retinal microvascular damage
Clinical studies have suggested that the renin-angiotensin system (RAS) may be a promising therapeutic target in treating diabetic retinopathy (DR). While AT1 receptor blockade decreased the incidence of DR in the DIRECT trial, it did not reduce the DR progression. Lack of understanding of the molec...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7728430/ https://www.ncbi.nlm.nih.gov/pubmed/32360774 http://dx.doi.org/10.1016/j.prostaglandins.2020.106449 |
_version_ | 1783621275273396224 |
---|---|
author | Wang, Mong-Heng Ibrahim, Ahmed S. Hsiao, George Tawfik, Amany Al-Shabrawey, Mohamed |
author_facet | Wang, Mong-Heng Ibrahim, Ahmed S. Hsiao, George Tawfik, Amany Al-Shabrawey, Mohamed |
author_sort | Wang, Mong-Heng |
collection | PubMed |
description | Clinical studies have suggested that the renin-angiotensin system (RAS) may be a promising therapeutic target in treating diabetic retinopathy (DR). While AT1 receptor blockade decreased the incidence of DR in the DIRECT trial, it did not reduce the DR progression. Lack of understanding of the molecular mechanism of retinal microvascular damage induced by RAS is a critical barrier to the use of RAS blockade in preventing or treating DR. The purpose of this study is to investigate the interaction between soluble epoxide hydrolase (sEH) and the AT1 receptor in Angiotensin II (Ang II)- and diabetes-induced retinal microvascular damage. We demonstrate that Ang II increases retinal sEH levels, which is blunted by an AT1 blocker; administration of 11,12-epoxyeicosatrienoic acid (EET) exacerbates intravitreal Ang II-induced retinal albumin leakage; while sEH knockout (KO) and blockade reduce Ang II-induced retinal vascular remodeling, sEH KO causes retinal vascular leakage in Ang II-sEH KO mice; and sEH KO potentiates diabetes-induced retinal damage via promoting retinal vascular endothelial growth factor (VEGF) but reducing expression of tight junction proteins (ZO-1 and occludin). Our studies hold the promise of providing a new strategy, the use of combined EETs blockade with AT1 blocker, to prevent or reduce DR. |
format | Online Article Text |
id | pubmed-7728430 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-77284302020-12-10 A novel interaction between soluble epoxide hydrolase and the AT1 receptor in retinal microvascular damage Wang, Mong-Heng Ibrahim, Ahmed S. Hsiao, George Tawfik, Amany Al-Shabrawey, Mohamed Prostaglandins Other Lipid Mediat Article Clinical studies have suggested that the renin-angiotensin system (RAS) may be a promising therapeutic target in treating diabetic retinopathy (DR). While AT1 receptor blockade decreased the incidence of DR in the DIRECT trial, it did not reduce the DR progression. Lack of understanding of the molecular mechanism of retinal microvascular damage induced by RAS is a critical barrier to the use of RAS blockade in preventing or treating DR. The purpose of this study is to investigate the interaction between soluble epoxide hydrolase (sEH) and the AT1 receptor in Angiotensin II (Ang II)- and diabetes-induced retinal microvascular damage. We demonstrate that Ang II increases retinal sEH levels, which is blunted by an AT1 blocker; administration of 11,12-epoxyeicosatrienoic acid (EET) exacerbates intravitreal Ang II-induced retinal albumin leakage; while sEH knockout (KO) and blockade reduce Ang II-induced retinal vascular remodeling, sEH KO causes retinal vascular leakage in Ang II-sEH KO mice; and sEH KO potentiates diabetes-induced retinal damage via promoting retinal vascular endothelial growth factor (VEGF) but reducing expression of tight junction proteins (ZO-1 and occludin). Our studies hold the promise of providing a new strategy, the use of combined EETs blockade with AT1 blocker, to prevent or reduce DR. 2020-04-30 2020-06 /pmc/articles/PMC7728430/ /pubmed/32360774 http://dx.doi.org/10.1016/j.prostaglandins.2020.106449 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). |
spellingShingle | Article Wang, Mong-Heng Ibrahim, Ahmed S. Hsiao, George Tawfik, Amany Al-Shabrawey, Mohamed A novel interaction between soluble epoxide hydrolase and the AT1 receptor in retinal microvascular damage |
title | A novel interaction between soluble epoxide hydrolase and the AT1 receptor in retinal microvascular damage |
title_full | A novel interaction between soluble epoxide hydrolase and the AT1 receptor in retinal microvascular damage |
title_fullStr | A novel interaction between soluble epoxide hydrolase and the AT1 receptor in retinal microvascular damage |
title_full_unstemmed | A novel interaction between soluble epoxide hydrolase and the AT1 receptor in retinal microvascular damage |
title_short | A novel interaction between soluble epoxide hydrolase and the AT1 receptor in retinal microvascular damage |
title_sort | novel interaction between soluble epoxide hydrolase and the at1 receptor in retinal microvascular damage |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7728430/ https://www.ncbi.nlm.nih.gov/pubmed/32360774 http://dx.doi.org/10.1016/j.prostaglandins.2020.106449 |
work_keys_str_mv | AT wangmongheng anovelinteractionbetweensolubleepoxidehydrolaseandtheat1receptorinretinalmicrovasculardamage AT ibrahimahmeds anovelinteractionbetweensolubleepoxidehydrolaseandtheat1receptorinretinalmicrovasculardamage AT hsiaogeorge anovelinteractionbetweensolubleepoxidehydrolaseandtheat1receptorinretinalmicrovasculardamage AT tawfikamany anovelinteractionbetweensolubleepoxidehydrolaseandtheat1receptorinretinalmicrovasculardamage AT alshabraweymohamed anovelinteractionbetweensolubleepoxidehydrolaseandtheat1receptorinretinalmicrovasculardamage AT wangmongheng novelinteractionbetweensolubleepoxidehydrolaseandtheat1receptorinretinalmicrovasculardamage AT ibrahimahmeds novelinteractionbetweensolubleepoxidehydrolaseandtheat1receptorinretinalmicrovasculardamage AT hsiaogeorge novelinteractionbetweensolubleepoxidehydrolaseandtheat1receptorinretinalmicrovasculardamage AT tawfikamany novelinteractionbetweensolubleepoxidehydrolaseandtheat1receptorinretinalmicrovasculardamage AT alshabraweymohamed novelinteractionbetweensolubleepoxidehydrolaseandtheat1receptorinretinalmicrovasculardamage |