Cargando…
Hierarchical Optimization of 3D Point Cloud Registration
Rigid registration of 3D point clouds is the key technology in robotics and computer vision. Most commonly, the iterative closest point (ICP) and its variants are employed for this task. These methods assume that the closest point is the corresponding point and lead to sensitivity to the outlier and...
Autores principales: | Liu, Huikai, Zhang, Yue, Lei, Linjian, Xie, Hui, Li, Yan, Sun, Shengli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729737/ https://www.ncbi.nlm.nih.gov/pubmed/33297494 http://dx.doi.org/10.3390/s20236999 |
Ejemplares similares
-
STAC: Spatial-Temporal Attention on Compensation Information for Activity Recognition in FPV
por: Zhang, Yue, et al.
Publicado: (2021) -
A Maximum Feasible Subsystem for Globally Optimal 3D Point Cloud Registration
por: Yu, Chanki, et al.
Publicado: (2018) -
Genetic Algorithm-Based Optimization for Color Point Cloud Registration
por: Liu, Dongsheng, et al.
Publicado: (2022) -
Robust 3D point cloud registration based on bidirectional Maximum Correntropy Criterion
por: Zhang, Xuetao, et al.
Publicado: (2018) -
RGB-D-Based Pose Estimation of Workpieces with Semantic Segmentation and Point Cloud Registration
por: Xu, Hui, et al.
Publicado: (2019)