Cargando…
EPGNet: Enhanced Point Cloud Generation for 3D Object Detection
Three-dimensional object detection from point cloud data is becoming more and more significant, especially for autonomous driving applications. However, it is difficult for lidar to obtain the complete structure of an object in a real scene due to its scanning characteristics. Although the existing...
Autores principales: | Chen, Qingsheng, Fan, Cien, Jin, Weizheng, Zou, Lian, Li, Fangyu, Li, Xiaopeng, Jiang, Hao, Wu, Minyuan, Liu, Yifeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7730589/ https://www.ncbi.nlm.nih.gov/pubmed/33291527 http://dx.doi.org/10.3390/s20236927 |
Ejemplares similares
-
PSANet: Pyramid Splitting and Aggregation Network for 3D Object Detection in Point Cloud
por: Li, Fangyu, et al.
Publicado: (2020) -
Whole and Part Adaptive Fusion Graph Convolutional Networks for Skeleton-Based Action Recognition
por: Zuo, Qi, et al.
Publicado: (2020) -
Inter-Level Feature Balanced Fusion Network for Street Scene Segmentation
por: Li, Dongqian, et al.
Publicado: (2021) -
Data-Driven Point Cloud Objects Completion
por: Zhang, Yang, et al.
Publicado: (2019) -
Symmetrical awareness network for cross-site ultrasound thyroid nodule segmentation
por: Ma, Wenxuan, et al.
Publicado: (2023)