Cargando…

tVNS Increases Liking of Orally Sampled Low-Fat Foods: A Pilot Study

Recently a role for the vagus nerve in conditioning food preferences was established in rodents. In a prospective controlled clinical trial in humans, invasive vagus nerve stimulation shifted food choice toward lower fat content. Here we explored whether hedonic aspects of an orally sampled food sti...

Descripción completa

Detalles Bibliográficos
Autores principales: Öztürk, Lina, Büning, Pia Elisa, Frangos, Eleni, de Lartigue, Guillaume, Veldhuizen, Maria G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731579/
https://www.ncbi.nlm.nih.gov/pubmed/33328943
http://dx.doi.org/10.3389/fnhum.2020.600995
Descripción
Sumario:Recently a role for the vagus nerve in conditioning food preferences was established in rodents. In a prospective controlled clinical trial in humans, invasive vagus nerve stimulation shifted food choice toward lower fat content. Here we explored whether hedonic aspects of an orally sampled food stimulus can be modulated by non-invasive transcutaneous vagus nerve stimulation (tVNS) in humans. In healthy participants (n = 10, five women, 20–32 years old, no obesity) we tested liking and wanting ratings of food samples with varying fat or sugar content with or without tVNS in a sham-controlled within-participants design. To determine effects of tVNS on food intake, we also measured voluntary consumption of milkshake. Spontaneous eye blink rate was measured as a proxy for dopamine tone. Liking of low-fat, but not high-fat puddings, was higher for tVNS relative to sham stimulation. Other outcomes showed no differences. These findings support a role for the vagus nerve promoting post-ingestive reward signals. Our results suggest that tVNS may be used to increase liking of low-calorie foods, which may support healthier food choices.