Cargando…

Insulin-regulated aminopeptidase deficiency impairs cardiovascular adaptations and placental development during pregnancy

Insulin-regulated aminopeptidase (IRAP), an enzyme that cleaves vasoactive peptides including oxytocin and vasopressin, is suggested to play a role in pregnancy and the onset of preeclampsia. Our aim was to examine the contribution of IRAP to arterial pressure regulation and placental development du...

Descripción completa

Detalles Bibliográficos
Autores principales: Walton, Sarah L., Mirabito Colafella, Katrina M., Ansari, Aneesa, Chai, Siew Yeen, Denton, Kate M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733041/
https://www.ncbi.nlm.nih.gov/pubmed/33252660
http://dx.doi.org/10.1042/CS20201233
Descripción
Sumario:Insulin-regulated aminopeptidase (IRAP), an enzyme that cleaves vasoactive peptides including oxytocin and vasopressin, is suggested to play a role in pregnancy and the onset of preeclampsia. Our aim was to examine the contribution of IRAP to arterial pressure regulation and placental development during pregnancy in mice. Mean arterial pressure and heart rate were measured via radiotelemetry in 12-week-old female wild-type and IRAP knockout mice. Females were time-mated with males of the same genotype. Placentae were collected at embryonic day 18.5 for histological analysis. Basal heart rate was ∼40 bpm lower in IRAP knockout females compared with wild-type females. The increase in heart rate across gestation was greater in IRAP knockout females than wild-type females. Neither basal nor gestational mean arterial pressure was different between wildtype and IRAP knockout females. Urine output and water intake of IRAP knockout mice were ∼45% less than wild-type mice at late gestation. IRAP deficiency had no effect on fetal weight. Morphological assessment of placentae revealed that IRAP deficiency was associated with reduced labyrinth surface area and accumulation of glycogen in the junctional zone. Our data demonstrate that IRAP deficiency alters maternal fluid handling and impairs placental labyrinth expansion at late gestation, indicating that IRAP contributes to the normal adaptions to pregnancy.