Cargando…

Human umbilical cord-derived mesenchymal stem cell therapy ameliorates lupus through increasing CD4+ T cell senescence via MiR-199a-5p/Sirt1/p53 axis

Rationale: Although human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) transplantation has been proved to be an effective therapeutic approach to treat systemic lupus erythematosus (SLE), the detailed underlying mechanisms are not fully understood. Transferring miRNAs is one mean by whic...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Tao, Ding, Shuai, Liu, Shanshan, Li, Yan, Sun, Lingyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7738872/
https://www.ncbi.nlm.nih.gov/pubmed/33391511
http://dx.doi.org/10.7150/thno.48080
_version_ 1783623215065595904
author Cheng, Tao
Ding, Shuai
Liu, Shanshan
Li, Yan
Sun, Lingyun
author_facet Cheng, Tao
Ding, Shuai
Liu, Shanshan
Li, Yan
Sun, Lingyun
author_sort Cheng, Tao
collection PubMed
description Rationale: Although human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) transplantation has been proved to be an effective therapeutic approach to treat systemic lupus erythematosus (SLE), the detailed underlying mechanisms are not fully understood. Transferring miRNAs is one mean by which MSCs communicate with surrounding cells. Sirt1 is a NAD-dependent deacetylase that protects against cell senescence by deacetylating p53. Here we aimed to explore whether hUC-MSCs affected senescence of splenic CD4+ T cells through regulating Sirt1/p53 via miRNA in the MRL/lpr lupus mouse model. Methods: The effects of hUC-MSCs on lupus syndrome and senescence pathways in MRL/lpr mice in vivo and in vitro were determined. The functional roles of miR-199a-5p in splenic CD4+ T cell senescence were studied by miRNA mimic or inhibitor in vitro. MRL/lpr mice were injected with miR-199a-5p agomir to evaluate the effects of miR-199a-5p on splenic CD4+ T cell senescence and disease in vivo. Results: We showed that hUC-MSCs transplantation ameliorated lupus symptoms and increased senescence of splenic CD4+ T cells through Sirt1/p53 signaling via miR-199a-5p in MRL/lpr mice. Moreover, systemic delivery of miR-199a-5p in MRL/lpr mice increased splenic CD4+ T-cell senescence, mimicking the therapeutic effects of transplanted hUC-MSCs. Conclusions: We have identified miR-199a-5p as one of the mechanisms employed by hUC-MSCs to alleviate lupus disease associated pathologies in MRL/lpr mice, which is attributable for promoting splenic CD4+ T cell senescence through Sirt1/p53 pathway.
format Online
Article
Text
id pubmed-7738872
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Ivyspring International Publisher
record_format MEDLINE/PubMed
spelling pubmed-77388722021-01-01 Human umbilical cord-derived mesenchymal stem cell therapy ameliorates lupus through increasing CD4+ T cell senescence via MiR-199a-5p/Sirt1/p53 axis Cheng, Tao Ding, Shuai Liu, Shanshan Li, Yan Sun, Lingyun Theranostics Research Paper Rationale: Although human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) transplantation has been proved to be an effective therapeutic approach to treat systemic lupus erythematosus (SLE), the detailed underlying mechanisms are not fully understood. Transferring miRNAs is one mean by which MSCs communicate with surrounding cells. Sirt1 is a NAD-dependent deacetylase that protects against cell senescence by deacetylating p53. Here we aimed to explore whether hUC-MSCs affected senescence of splenic CD4+ T cells through regulating Sirt1/p53 via miRNA in the MRL/lpr lupus mouse model. Methods: The effects of hUC-MSCs on lupus syndrome and senescence pathways in MRL/lpr mice in vivo and in vitro were determined. The functional roles of miR-199a-5p in splenic CD4+ T cell senescence were studied by miRNA mimic or inhibitor in vitro. MRL/lpr mice were injected with miR-199a-5p agomir to evaluate the effects of miR-199a-5p on splenic CD4+ T cell senescence and disease in vivo. Results: We showed that hUC-MSCs transplantation ameliorated lupus symptoms and increased senescence of splenic CD4+ T cells through Sirt1/p53 signaling via miR-199a-5p in MRL/lpr mice. Moreover, systemic delivery of miR-199a-5p in MRL/lpr mice increased splenic CD4+ T-cell senescence, mimicking the therapeutic effects of transplanted hUC-MSCs. Conclusions: We have identified miR-199a-5p as one of the mechanisms employed by hUC-MSCs to alleviate lupus disease associated pathologies in MRL/lpr mice, which is attributable for promoting splenic CD4+ T cell senescence through Sirt1/p53 pathway. Ivyspring International Publisher 2021-01-01 /pmc/articles/PMC7738872/ /pubmed/33391511 http://dx.doi.org/10.7150/thno.48080 Text en © The author(s) This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
spellingShingle Research Paper
Cheng, Tao
Ding, Shuai
Liu, Shanshan
Li, Yan
Sun, Lingyun
Human umbilical cord-derived mesenchymal stem cell therapy ameliorates lupus through increasing CD4+ T cell senescence via MiR-199a-5p/Sirt1/p53 axis
title Human umbilical cord-derived mesenchymal stem cell therapy ameliorates lupus through increasing CD4+ T cell senescence via MiR-199a-5p/Sirt1/p53 axis
title_full Human umbilical cord-derived mesenchymal stem cell therapy ameliorates lupus through increasing CD4+ T cell senescence via MiR-199a-5p/Sirt1/p53 axis
title_fullStr Human umbilical cord-derived mesenchymal stem cell therapy ameliorates lupus through increasing CD4+ T cell senescence via MiR-199a-5p/Sirt1/p53 axis
title_full_unstemmed Human umbilical cord-derived mesenchymal stem cell therapy ameliorates lupus through increasing CD4+ T cell senescence via MiR-199a-5p/Sirt1/p53 axis
title_short Human umbilical cord-derived mesenchymal stem cell therapy ameliorates lupus through increasing CD4+ T cell senescence via MiR-199a-5p/Sirt1/p53 axis
title_sort human umbilical cord-derived mesenchymal stem cell therapy ameliorates lupus through increasing cd4+ t cell senescence via mir-199a-5p/sirt1/p53 axis
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7738872/
https://www.ncbi.nlm.nih.gov/pubmed/33391511
http://dx.doi.org/10.7150/thno.48080
work_keys_str_mv AT chengtao humanumbilicalcordderivedmesenchymalstemcelltherapyameliorateslupusthroughincreasingcd4tcellsenescenceviamir199a5psirt1p53axis
AT dingshuai humanumbilicalcordderivedmesenchymalstemcelltherapyameliorateslupusthroughincreasingcd4tcellsenescenceviamir199a5psirt1p53axis
AT liushanshan humanumbilicalcordderivedmesenchymalstemcelltherapyameliorateslupusthroughincreasingcd4tcellsenescenceviamir199a5psirt1p53axis
AT liyan humanumbilicalcordderivedmesenchymalstemcelltherapyameliorateslupusthroughincreasingcd4tcellsenescenceviamir199a5psirt1p53axis
AT sunlingyun humanumbilicalcordderivedmesenchymalstemcelltherapyameliorateslupusthroughincreasingcd4tcellsenescenceviamir199a5psirt1p53axis