Cargando…

Protein Timing Does Not Affect Next-Day Recovery of Strength or Power but May Enhance Aerobic Adaptations to Short-Term Variable Intensity Exercise Training in Recreationally Active Males: A Pilot Study

Background: Variable intensity training (VIT) characteristic of stop-and-go team sport exercise may reduce performance capacity when performed on successive days but also represent a strategy to induce rapid training-induced increases in exercise capacity. Although post-exercise protein enhances mus...

Descripción completa

Detalles Bibliográficos
Autores principales: Hannaian, Sarkis J., Orlando, Mark N., Abou Sawan, Sidney, Mazzulla, Michael, West, Daniel W. D., Moore, Daniel R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7739639/
https://www.ncbi.nlm.nih.gov/pubmed/33345126
http://dx.doi.org/10.3389/fspor.2020.568740
Descripción
Sumario:Background: Variable intensity training (VIT) characteristic of stop-and-go team sport exercise may reduce performance capacity when performed on successive days but also represent a strategy to induce rapid training-induced increases in exercise capacity. Although post-exercise protein enhances muscle protein synthesis, the timing of protein ingestion following variable intensity training (VIT) on next-day recovery and short-term performance adaptation is unknown. Purpose: To determine if immediate (IMM) as compared to delayed (DEL) protein ingestion supports greater acute recovery of exercise performance during successive days of VIT and/or supports chronic training adaptations. Methods: Sixteen habitually active men performed 5 consecutive days of variable intensity training (VIT) in the evening prior to consuming a beverage providing carbohydrate and whey protein (IMM; 0.7 g and 0.3 g/kg, respectively) or carbohydrates alone (DEL; 1 g/kg) with the reciprocal beverage consumed the following morning. Performance was assessed before each VIT (recovery) and 2 days after the final VIT (adaptation). Results: Five consecutive days of VIT progressively decreased anaerobic peak power (~7%) and muscle strength (MVC; ~8%) with no impact of protein timing. Following 2 days of recovery, VIT increased maximal voluntary contraction and predicted VO(2peak) by ~10 and ~5%, respectively, with a moderate beneficial effect of IMM on predicted VO(2peak) (ES = 0.78). Conclusion: Successive days of simulated team sport exercise decreases markers of next-day performance capacity with no effect of protein timing on acute recovery. However, practical VIT increases muscle strength and aerobic capacity in as little as 5 days with the latter potentially enhanced by immediate post-exercise protein consumption.