Cargando…

High zT and Its Origin in Sb‐doped GeTe Single Crystals

A record high zT of 2.2 at 740 K is reported in Ge(0.92)Sb(0.08)Te single crystals, with an optimal hole carrier concentration ≈4 × 10(20) cm(−3) that simultaneously maximizes the power factor (PF) ≈56 µW cm(−1 )K(−2) and minimizes the thermal conductivity ≈1.9 Wm(−1) K(−1). In addition to the prese...

Descripción completa

Detalles Bibliográficos
Autores principales: Vankayala, Ranganayakulu K., Lan, Tian‐Wey, Parajuli, Prakash, Liu, Fengjiao, Rao, Rahul, Yu, Shih Hsun, Hung, Tsu‐Lien, Lee, Chih‐Hao, Yano, Shin‐ichiro, Hsing, Cheng‐Rong, Nguyen, Duc‐Long, Chen, Cheng‐Lung, Bhattacharya, Sriparna, Chen, Kuei‐Hsien, Ou, Min‐Nan, Rancu, Oliver, Rao, Apparao M., Chen, Yang‐Yuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7740100/
https://www.ncbi.nlm.nih.gov/pubmed/33344133
http://dx.doi.org/10.1002/advs.202002494
Descripción
Sumario:A record high zT of 2.2 at 740 K is reported in Ge(0.92)Sb(0.08)Te single crystals, with an optimal hole carrier concentration ≈4 × 10(20) cm(−3) that simultaneously maximizes the power factor (PF) ≈56 µW cm(−1 )K(−2) and minimizes the thermal conductivity ≈1.9 Wm(−1) K(−1). In addition to the presence of herringbone domains and stacking faults, the Ge(0.92)Sb(0.08)Te exhibits significant modification to phonon dispersion with an extra phonon excitation around ≈5–6 meV at Γ point of the Brillouin zone as confirmed through inelastic neutron scattering (INS) measurements. Density functional theory (DFT) confirmed this phonon excitation, and predicted another higher energy phonon excitation ≈12–13 meV at W point. These phonon excitations collectively increase the number of phonon decay channels leading to softening of phonon frequencies such that a three‐phonon process is dominant in Ge(0.92)Sb(0.08)Te, in contrast to a dominant four‐phonon process in pristine GeTe, highlighting the importance of phonon engineering approaches to improving thermoelectric (TE) performance.