Cargando…
Combining Ramachandran plot and molecular dynamics simulation for structural-based variant classification: Using TP53 variants as model
The wide application of new DNA sequencing technologies is generating vast quantities of genetic variation data at unprecedented speed. Developing methodologies to decode the pathogenicity of the variants is imperatively demanding. We hypothesized that as deleterious variants may function through di...
Autores principales: | Tam, Benjamin, Sinha, Siddharth, Wang, San Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7744649/ https://www.ncbi.nlm.nih.gov/pubmed/33363700 http://dx.doi.org/10.1016/j.csbj.2020.11.041 |
Ejemplares similares
-
Integration of deep learning with Ramachandran plot molecular dynamics simulation for genetic variant classification
por: Tam, Benjamin, et al.
Publicado: (2023) -
Comprehensive Identification of Deleterious TP53 Missense VUS Variants Based on Their Impact on TP53 Structural Stability
por: Tam, Benjamin, et al.
Publicado: (2021) -
The Ramachandran plots of glycine and pre-proline
por: Ho, Bosco K, et al.
Publicado: (2005) -
Classification of VUS and unclassified variants in BRCA1 BRCT repeats by molecular dynamics simulation
por: Sinha, Siddharth, et al.
Publicado: (2020) -
Unfavorable regions in the ramachandran plot: Is it really steric hindrance? The interacting quantum atoms perspective
por: Maxwell, Peter I., et al.
Publicado: (2017)