Cargando…
Network preservation reveals shared and unique biological processes associated with chronic alcohol abuse in NAc and PFC
Chronic alcohol abuse has been linked to the disruption of executive function and allostatic conditioning of reward response dysregulation in the mesocorticolimbic pathway (MCL). Here, we analyzed genome-wide mRNA and miRNA expression from matched cases with alcohol dependence (AD) and controls (n =...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7745987/ https://www.ncbi.nlm.nih.gov/pubmed/33332381 http://dx.doi.org/10.1371/journal.pone.0243857 |
_version_ | 1783624700797124608 |
---|---|
author | Vornholt, Eric Drake, John Mamdani, Mohammed McMichael, Gowon Taylor, Zachary N. Bacanu, Silviu-Alin Miles, Michael F. Vladimirov, Vladimir I. |
author_facet | Vornholt, Eric Drake, John Mamdani, Mohammed McMichael, Gowon Taylor, Zachary N. Bacanu, Silviu-Alin Miles, Michael F. Vladimirov, Vladimir I. |
author_sort | Vornholt, Eric |
collection | PubMed |
description | Chronic alcohol abuse has been linked to the disruption of executive function and allostatic conditioning of reward response dysregulation in the mesocorticolimbic pathway (MCL). Here, we analyzed genome-wide mRNA and miRNA expression from matched cases with alcohol dependence (AD) and controls (n = 35) via gene network analysis to identify unique and shared biological processes dysregulated in the prefrontal cortex (PFC) and nucleus accumbens (NAc). We further investigated potential mRNA/miRNA interactions at the network and individual gene expression levels to identify the neurobiological mechanisms underlying AD in the brain. By using genotyped and imputed SNP data, we identified expression quantitative trait loci (eQTL) uncovering potential genetic regulatory elements for gene networks associated with AD. At a Bonferroni corrected p≤0.05, we identified significant mRNA (NAc = 6; PFC = 3) and miRNA (NAc = 3; PFC = 2) AD modules. The gene-set enrichment analyses revealed modules preserved between PFC and NAc to be enriched for immune response processes, whereas genes involved in cellular morphogenesis/localization and cilia-based cell projection were enriched in NAc modules only. At a Bonferroni corrected p≤0.05, we identified significant mRNA/miRNA network module correlations (NAc = 6; PFC = 4), which at an individual transcript level implicated miR-449a/b as potential regulators for cellular morphogenesis/localization in NAc. Finally, we identified eQTLs (NAc: mRNA = 37, miRNA = 9; PFC: mRNA = 17, miRNA = 16) which potentially mediate alcohol’s effect in a brain region-specific manner. Our study highlights the neurotoxic effects of chronic alcohol abuse as well as brain region specific molecular changes that may impact the development of alcohol addiction. |
format | Online Article Text |
id | pubmed-7745987 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-77459872020-12-31 Network preservation reveals shared and unique biological processes associated with chronic alcohol abuse in NAc and PFC Vornholt, Eric Drake, John Mamdani, Mohammed McMichael, Gowon Taylor, Zachary N. Bacanu, Silviu-Alin Miles, Michael F. Vladimirov, Vladimir I. PLoS One Research Article Chronic alcohol abuse has been linked to the disruption of executive function and allostatic conditioning of reward response dysregulation in the mesocorticolimbic pathway (MCL). Here, we analyzed genome-wide mRNA and miRNA expression from matched cases with alcohol dependence (AD) and controls (n = 35) via gene network analysis to identify unique and shared biological processes dysregulated in the prefrontal cortex (PFC) and nucleus accumbens (NAc). We further investigated potential mRNA/miRNA interactions at the network and individual gene expression levels to identify the neurobiological mechanisms underlying AD in the brain. By using genotyped and imputed SNP data, we identified expression quantitative trait loci (eQTL) uncovering potential genetic regulatory elements for gene networks associated with AD. At a Bonferroni corrected p≤0.05, we identified significant mRNA (NAc = 6; PFC = 3) and miRNA (NAc = 3; PFC = 2) AD modules. The gene-set enrichment analyses revealed modules preserved between PFC and NAc to be enriched for immune response processes, whereas genes involved in cellular morphogenesis/localization and cilia-based cell projection were enriched in NAc modules only. At a Bonferroni corrected p≤0.05, we identified significant mRNA/miRNA network module correlations (NAc = 6; PFC = 4), which at an individual transcript level implicated miR-449a/b as potential regulators for cellular morphogenesis/localization in NAc. Finally, we identified eQTLs (NAc: mRNA = 37, miRNA = 9; PFC: mRNA = 17, miRNA = 16) which potentially mediate alcohol’s effect in a brain region-specific manner. Our study highlights the neurotoxic effects of chronic alcohol abuse as well as brain region specific molecular changes that may impact the development of alcohol addiction. Public Library of Science 2020-12-17 /pmc/articles/PMC7745987/ /pubmed/33332381 http://dx.doi.org/10.1371/journal.pone.0243857 Text en © 2020 Vornholt et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Vornholt, Eric Drake, John Mamdani, Mohammed McMichael, Gowon Taylor, Zachary N. Bacanu, Silviu-Alin Miles, Michael F. Vladimirov, Vladimir I. Network preservation reveals shared and unique biological processes associated with chronic alcohol abuse in NAc and PFC |
title | Network preservation reveals shared and unique biological processes associated with chronic alcohol abuse in NAc and PFC |
title_full | Network preservation reveals shared and unique biological processes associated with chronic alcohol abuse in NAc and PFC |
title_fullStr | Network preservation reveals shared and unique biological processes associated with chronic alcohol abuse in NAc and PFC |
title_full_unstemmed | Network preservation reveals shared and unique biological processes associated with chronic alcohol abuse in NAc and PFC |
title_short | Network preservation reveals shared and unique biological processes associated with chronic alcohol abuse in NAc and PFC |
title_sort | network preservation reveals shared and unique biological processes associated with chronic alcohol abuse in nac and pfc |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7745987/ https://www.ncbi.nlm.nih.gov/pubmed/33332381 http://dx.doi.org/10.1371/journal.pone.0243857 |
work_keys_str_mv | AT vornholteric networkpreservationrevealssharedanduniquebiologicalprocessesassociatedwithchronicalcoholabuseinnacandpfc AT drakejohn networkpreservationrevealssharedanduniquebiologicalprocessesassociatedwithchronicalcoholabuseinnacandpfc AT mamdanimohammed networkpreservationrevealssharedanduniquebiologicalprocessesassociatedwithchronicalcoholabuseinnacandpfc AT mcmichaelgowon networkpreservationrevealssharedanduniquebiologicalprocessesassociatedwithchronicalcoholabuseinnacandpfc AT taylorzacharyn networkpreservationrevealssharedanduniquebiologicalprocessesassociatedwithchronicalcoholabuseinnacandpfc AT bacanusilviualin networkpreservationrevealssharedanduniquebiologicalprocessesassociatedwithchronicalcoholabuseinnacandpfc AT milesmichaelf networkpreservationrevealssharedanduniquebiologicalprocessesassociatedwithchronicalcoholabuseinnacandpfc AT vladimirovvladimiri networkpreservationrevealssharedanduniquebiologicalprocessesassociatedwithchronicalcoholabuseinnacandpfc |