Cargando…
The GENDULF algorithm: mining transcriptomics to uncover modifier genes for monogenic diseases
Modifier genes are believed to account for the clinical variability observed in many Mendelian disorders, but their identification remains challenging due to the limited availability of genomics data from large patient cohorts. Here, we present GENDULF (GENetic moDULators identiFication), one of the...
Autores principales: | Auslander, Noam, Ramos, Daniel M, Zelaya, Ivette, Karathia, Hiren, Crawford, Thomas O., Schäffer, Alejandro A, Sumner, Charlotte J, Ruppin, Eytan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7754056/ https://www.ncbi.nlm.nih.gov/pubmed/33438800 http://dx.doi.org/10.15252/msb.20209701 |
Ejemplares similares
-
A joint analysis of transcriptomic and metabolomic data uncovers enhanced enzyme-metabolite coupling in breast cancer
por: Auslander, Noam, et al.
Publicado: (2016) -
Data-Driven Metabolic Pathway Compositions Enhance Cancer Survival Prediction
por: Auslander, Noam, et al.
Publicado: (2016) -
Flux balance analysis accounting for metabolite dilution
por: Benyamini, Tomer, et al.
Publicado: (2010) -
LipidSeq: a next-generation clinical resequencing panel for monogenic dyslipidemias
por: Johansen, Christopher T., et al.
Publicado: (2014) -
Biblio-MetReS for user-friendly mining of genes and biological processes in scientific documents
por: Usie, Anabel, et al.
Publicado: (2014)