Cargando…
Molecular Zinc Hydride Cations [ZnH](+): Synthesis, Structure, and CO(2) Hydrosilylation Catalysis
Protonolysis of [ZnH(2)](n) with the conjugated Brønsted acid of the bidentate diamine TMEDA (N,N,N′,N′‐tetramethylethane‐1,2‐diamine) and TEEDA (N,N,N′,N′‐tetraethylethane‐1,2‐diamine) gave the zinc hydride cation [(L(2))ZnH](+), isolable either as the mononuclear THF adduct [(L(2))ZnH(thf)](+)[BAr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7756573/ https://www.ncbi.nlm.nih.gov/pubmed/32931656 http://dx.doi.org/10.1002/anie.202011480 |
_version_ | 1783626572546179072 |
---|---|
author | Ritter, Florian Spaniol, Thomas P. Douair, Iskander Maron, Laurent Okuda, Jun |
author_facet | Ritter, Florian Spaniol, Thomas P. Douair, Iskander Maron, Laurent Okuda, Jun |
author_sort | Ritter, Florian |
collection | PubMed |
description | Protonolysis of [ZnH(2)](n) with the conjugated Brønsted acid of the bidentate diamine TMEDA (N,N,N′,N′‐tetramethylethane‐1,2‐diamine) and TEEDA (N,N,N′,N′‐tetraethylethane‐1,2‐diamine) gave the zinc hydride cation [(L(2))ZnH](+), isolable either as the mononuclear THF adduct [(L(2))ZnH(thf)](+)[BAr(F) (4)](−) (L(2)=TMEDA; BAr(F) (4) (−)=[B(3,5‐(CF(3))(2)‐C(6)H(3))(4)](−)) or as the dimer [{(L(2))Zn)}(2)(μ‐H)(2)](2+)[BAr(F) (4)](−) (2) (L(2)=TEEDA). In contrast to [ZnH(2)](n), the cationic zinc hydrides are thermally stable and soluble in THF. [(L(2))ZnH](+) was also shown to form di‐ and trinuclear adducts of the elusive neutral [(L(2))ZnH(2)]. All hydride‐containing cations readily inserted CO(2) to give the corresponding formate complexes. [(TMEDA)ZnH](+)[BAr(F) (4)](−) catalyzed the hydrosilylation of CO(2) with tertiary hydrosilanes to give stepwise formoxy silane, methyl formate, and methoxy silane. The unexpected formation of methyl formate was shown to result from the zinc‐catalyzed transesterification of methoxy silane with formoxy silane, which was eventually converted into methoxy silane as well. |
format | Online Article Text |
id | pubmed-7756573 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-77565732020-12-28 Molecular Zinc Hydride Cations [ZnH](+): Synthesis, Structure, and CO(2) Hydrosilylation Catalysis Ritter, Florian Spaniol, Thomas P. Douair, Iskander Maron, Laurent Okuda, Jun Angew Chem Int Ed Engl Research Articles Protonolysis of [ZnH(2)](n) with the conjugated Brønsted acid of the bidentate diamine TMEDA (N,N,N′,N′‐tetramethylethane‐1,2‐diamine) and TEEDA (N,N,N′,N′‐tetraethylethane‐1,2‐diamine) gave the zinc hydride cation [(L(2))ZnH](+), isolable either as the mononuclear THF adduct [(L(2))ZnH(thf)](+)[BAr(F) (4)](−) (L(2)=TMEDA; BAr(F) (4) (−)=[B(3,5‐(CF(3))(2)‐C(6)H(3))(4)](−)) or as the dimer [{(L(2))Zn)}(2)(μ‐H)(2)](2+)[BAr(F) (4)](−) (2) (L(2)=TEEDA). In contrast to [ZnH(2)](n), the cationic zinc hydrides are thermally stable and soluble in THF. [(L(2))ZnH](+) was also shown to form di‐ and trinuclear adducts of the elusive neutral [(L(2))ZnH(2)]. All hydride‐containing cations readily inserted CO(2) to give the corresponding formate complexes. [(TMEDA)ZnH](+)[BAr(F) (4)](−) catalyzed the hydrosilylation of CO(2) with tertiary hydrosilanes to give stepwise formoxy silane, methyl formate, and methoxy silane. The unexpected formation of methyl formate was shown to result from the zinc‐catalyzed transesterification of methoxy silane with formoxy silane, which was eventually converted into methoxy silane as well. John Wiley and Sons Inc. 2020-10-15 2020-12-14 /pmc/articles/PMC7756573/ /pubmed/32931656 http://dx.doi.org/10.1002/anie.202011480 Text en © 2020 The Authors. Published by Wiley-VCH GmbH This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Ritter, Florian Spaniol, Thomas P. Douair, Iskander Maron, Laurent Okuda, Jun Molecular Zinc Hydride Cations [ZnH](+): Synthesis, Structure, and CO(2) Hydrosilylation Catalysis |
title | Molecular Zinc Hydride Cations [ZnH](+): Synthesis, Structure, and CO(2) Hydrosilylation Catalysis |
title_full | Molecular Zinc Hydride Cations [ZnH](+): Synthesis, Structure, and CO(2) Hydrosilylation Catalysis |
title_fullStr | Molecular Zinc Hydride Cations [ZnH](+): Synthesis, Structure, and CO(2) Hydrosilylation Catalysis |
title_full_unstemmed | Molecular Zinc Hydride Cations [ZnH](+): Synthesis, Structure, and CO(2) Hydrosilylation Catalysis |
title_short | Molecular Zinc Hydride Cations [ZnH](+): Synthesis, Structure, and CO(2) Hydrosilylation Catalysis |
title_sort | molecular zinc hydride cations [znh](+): synthesis, structure, and co(2) hydrosilylation catalysis |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7756573/ https://www.ncbi.nlm.nih.gov/pubmed/32931656 http://dx.doi.org/10.1002/anie.202011480 |
work_keys_str_mv | AT ritterflorian molecularzinchydridecationsznhsynthesisstructureandco2hydrosilylationcatalysis AT spaniolthomasp molecularzinchydridecationsznhsynthesisstructureandco2hydrosilylationcatalysis AT douairiskander molecularzinchydridecationsznhsynthesisstructureandco2hydrosilylationcatalysis AT maronlaurent molecularzinchydridecationsznhsynthesisstructureandco2hydrosilylationcatalysis AT okudajun molecularzinchydridecationsznhsynthesisstructureandco2hydrosilylationcatalysis |