Cargando…

Molecular Zinc Hydride Cations [ZnH](+): Synthesis, Structure, and CO(2) Hydrosilylation Catalysis

Protonolysis of [ZnH(2)](n) with the conjugated Brønsted acid of the bidentate diamine TMEDA (N,N,N′,N′‐tetramethylethane‐1,2‐diamine) and TEEDA (N,N,N′,N′‐tetraethylethane‐1,2‐diamine) gave the zinc hydride cation [(L(2))ZnH](+), isolable either as the mononuclear THF adduct [(L(2))ZnH(thf)](+)[BAr...

Descripción completa

Detalles Bibliográficos
Autores principales: Ritter, Florian, Spaniol, Thomas P., Douair, Iskander, Maron, Laurent, Okuda, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7756573/
https://www.ncbi.nlm.nih.gov/pubmed/32931656
http://dx.doi.org/10.1002/anie.202011480
_version_ 1783626572546179072
author Ritter, Florian
Spaniol, Thomas P.
Douair, Iskander
Maron, Laurent
Okuda, Jun
author_facet Ritter, Florian
Spaniol, Thomas P.
Douair, Iskander
Maron, Laurent
Okuda, Jun
author_sort Ritter, Florian
collection PubMed
description Protonolysis of [ZnH(2)](n) with the conjugated Brønsted acid of the bidentate diamine TMEDA (N,N,N′,N′‐tetramethylethane‐1,2‐diamine) and TEEDA (N,N,N′,N′‐tetraethylethane‐1,2‐diamine) gave the zinc hydride cation [(L(2))ZnH](+), isolable either as the mononuclear THF adduct [(L(2))ZnH(thf)](+)[BAr(F) (4)](−) (L(2)=TMEDA; BAr(F) (4) (−)=[B(3,5‐(CF(3))(2)‐C(6)H(3))(4)](−)) or as the dimer [{(L(2))Zn)}(2)(μ‐H)(2)](2+)[BAr(F) (4)](−) (2) (L(2)=TEEDA). In contrast to [ZnH(2)](n), the cationic zinc hydrides are thermally stable and soluble in THF. [(L(2))ZnH](+) was also shown to form di‐ and trinuclear adducts of the elusive neutral [(L(2))ZnH(2)]. All hydride‐containing cations readily inserted CO(2) to give the corresponding formate complexes. [(TMEDA)ZnH](+)[BAr(F) (4)](−) catalyzed the hydrosilylation of CO(2) with tertiary hydrosilanes to give stepwise formoxy silane, methyl formate, and methoxy silane. The unexpected formation of methyl formate was shown to result from the zinc‐catalyzed transesterification of methoxy silane with formoxy silane, which was eventually converted into methoxy silane as well.
format Online
Article
Text
id pubmed-7756573
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-77565732020-12-28 Molecular Zinc Hydride Cations [ZnH](+): Synthesis, Structure, and CO(2) Hydrosilylation Catalysis Ritter, Florian Spaniol, Thomas P. Douair, Iskander Maron, Laurent Okuda, Jun Angew Chem Int Ed Engl Research Articles Protonolysis of [ZnH(2)](n) with the conjugated Brønsted acid of the bidentate diamine TMEDA (N,N,N′,N′‐tetramethylethane‐1,2‐diamine) and TEEDA (N,N,N′,N′‐tetraethylethane‐1,2‐diamine) gave the zinc hydride cation [(L(2))ZnH](+), isolable either as the mononuclear THF adduct [(L(2))ZnH(thf)](+)[BAr(F) (4)](−) (L(2)=TMEDA; BAr(F) (4) (−)=[B(3,5‐(CF(3))(2)‐C(6)H(3))(4)](−)) or as the dimer [{(L(2))Zn)}(2)(μ‐H)(2)](2+)[BAr(F) (4)](−) (2) (L(2)=TEEDA). In contrast to [ZnH(2)](n), the cationic zinc hydrides are thermally stable and soluble in THF. [(L(2))ZnH](+) was also shown to form di‐ and trinuclear adducts of the elusive neutral [(L(2))ZnH(2)]. All hydride‐containing cations readily inserted CO(2) to give the corresponding formate complexes. [(TMEDA)ZnH](+)[BAr(F) (4)](−) catalyzed the hydrosilylation of CO(2) with tertiary hydrosilanes to give stepwise formoxy silane, methyl formate, and methoxy silane. The unexpected formation of methyl formate was shown to result from the zinc‐catalyzed transesterification of methoxy silane with formoxy silane, which was eventually converted into methoxy silane as well. John Wiley and Sons Inc. 2020-10-15 2020-12-14 /pmc/articles/PMC7756573/ /pubmed/32931656 http://dx.doi.org/10.1002/anie.202011480 Text en © 2020 The Authors. Published by Wiley-VCH GmbH This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Research Articles
Ritter, Florian
Spaniol, Thomas P.
Douair, Iskander
Maron, Laurent
Okuda, Jun
Molecular Zinc Hydride Cations [ZnH](+): Synthesis, Structure, and CO(2) Hydrosilylation Catalysis
title Molecular Zinc Hydride Cations [ZnH](+): Synthesis, Structure, and CO(2) Hydrosilylation Catalysis
title_full Molecular Zinc Hydride Cations [ZnH](+): Synthesis, Structure, and CO(2) Hydrosilylation Catalysis
title_fullStr Molecular Zinc Hydride Cations [ZnH](+): Synthesis, Structure, and CO(2) Hydrosilylation Catalysis
title_full_unstemmed Molecular Zinc Hydride Cations [ZnH](+): Synthesis, Structure, and CO(2) Hydrosilylation Catalysis
title_short Molecular Zinc Hydride Cations [ZnH](+): Synthesis, Structure, and CO(2) Hydrosilylation Catalysis
title_sort molecular zinc hydride cations [znh](+): synthesis, structure, and co(2) hydrosilylation catalysis
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7756573/
https://www.ncbi.nlm.nih.gov/pubmed/32931656
http://dx.doi.org/10.1002/anie.202011480
work_keys_str_mv AT ritterflorian molecularzinchydridecationsznhsynthesisstructureandco2hydrosilylationcatalysis
AT spaniolthomasp molecularzinchydridecationsznhsynthesisstructureandco2hydrosilylationcatalysis
AT douairiskander molecularzinchydridecationsznhsynthesisstructureandco2hydrosilylationcatalysis
AT maronlaurent molecularzinchydridecationsznhsynthesisstructureandco2hydrosilylationcatalysis
AT okudajun molecularzinchydridecationsznhsynthesisstructureandco2hydrosilylationcatalysis