Cargando…

Prodrugs of γ‐Alkyl‐Modified Nucleoside Triphosphates: Improved Inhibition of HIV Reverse Transcriptase

The development of nucleoside triphosphate prodrugs is one option to apply nucleoside reverse transcriptase inhibitors. Herein, we report the synthesis and evaluation of d4TTP analogues, in which the γ‐phosphate was modified covalently by lipophilic alkyl residues, and acyloxybenzyl prodrugs of thes...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Chenglong, Weber, Stefan, Schols, Dominique, Balzarini, Jan, Meier, Chris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7756582/
https://www.ncbi.nlm.nih.gov/pubmed/32379948
http://dx.doi.org/10.1002/anie.202003073
Descripción
Sumario:The development of nucleoside triphosphate prodrugs is one option to apply nucleoside reverse transcriptase inhibitors. Herein, we report the synthesis and evaluation of d4TTP analogues, in which the γ‐phosphate was modified covalently by lipophilic alkyl residues, and acyloxybenzyl prodrugs of these γ‐alkyl‐modified d4TTPs, with the aim of delivering of γ‐alkyl‐d4TTP into cells. Selective formation of γ‐alkyl‐d4TTP was proven with esterase and in CD4(+)‐cell extracts. In contrast to d4TTP, γ‐alkyl‐d4TTPs proved highly stable against dephosphorylation. Primer extension assays with HIV reverse transcriptase (RT) and DNA‐polymerases α, β or γ showed that γ‐alkyl‐d4TTPs were substrates for HIV‐RT only. In antiviral assays, compounds were highly potent inhibitors of HIV‐1 and HIV‐2 also in thymidine‐kinase‐deficient T‐cell cultures (CEM/TK(−)). Thus, the intracellular delivery of such γ‐alkyl‐nucleoside triphosphates may potentially lead to nucleoside triphosphates with a higher selectivity towards the viral polymerase that can act in virus‐infected cells.