Cargando…
DKC1 Overexpression Induces a More Aggressive Cellular Behavior and Increases Intrinsic Ribosomal Activity in Immortalized Mammary Gland Cells
SIMPLE SUMMARY: Dyskerin is a nucleolar protein involved in the modification and processing of ribosomal RNA and in the stabilization of the telomerase RNA component. In several human tumors, including breast cancer, dyskerin overexpression is found related to patients’ worse prognosis. Our aim was...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760958/ https://www.ncbi.nlm.nih.gov/pubmed/33255756 http://dx.doi.org/10.3390/cancers12123512 |
Sumario: | SIMPLE SUMMARY: Dyskerin is a nucleolar protein involved in the modification and processing of ribosomal RNA and in the stabilization of the telomerase RNA component. In several human tumors, including breast cancer, dyskerin overexpression is found related to patients’ worse prognosis. Our aim was to study this phenomenon at the molecular and cellular levels. We firstly confirmed the correlation between high dyskerin expression with patients’ shorter survival. Then, through the generation of cellular models of increased dyskerin expression, we found that increasing dyskerin levels conferred a more aggressive phenotype and increased intrinsic ribosomal activity only in cells derived from normal breast epithelium. Our study provides evidence on the prognostic and bio-pathological relevance of the overexpression of dyskerin in breast carcinoma. A possible mechanistic explanation of the effects of dyskerin overexpression, involving specific ribosomal RNA modification and consequent increased ribosomal activity, is also provided. ABSTRACT: Dyskerin is a nucleolar protein involved in the small nucleolar RNA (snoRNA)-guided pseudouridylation of specific uridines on ribosomal RNA (rRNA), and in the stabilization of the telomerase RNA component (hTR). Loss of function mutations in DKC1 causes X-linked dyskeratosis congenita, which is characterized by a failure of proliferating tissues and increased susceptibility to cancer. However, several tumors show dyskerin overexpression. We observed that patients with primary breast cancers with high dyskerin levels are more frequently characterized by shorter survival rates and positive lymph node status than those with tumors with a lower dyskerin expression. To functionally characterize the effects of high dyskerin expression, we generated stably overexpressing DKC1 models finding that increased dyskerin levels conferred a more aggressive cellular phenotype in untransformed immortalized MCF10A cells. Contextually, DKC1 overexpression led to an upregulation of some snoRNAs, including SNORA67 and a significantly increased U1445 modification on 18S rRNA, the known target of SNORA67. Lastly, we found that dyskerin overexpression strongly enhanced the synthetic activity of ribosomes increasing translational efficiency in MCF10A. Altogether, our results indicate that dyskerin may sustain the neoplastic phenotype from an early stage in breast cancer endowing ribosomes with an augmented translation efficiency. |
---|