Cargando…
Single-Cell Spatial Analysis of Tumor and Immune Microenvironment on Whole-Slide Image Reveals Hepatocellular Carcinoma Subtypes
SIMPLE SUMMARY: Current molecular classification systems are primarily based on cancer-cell-intrinsic features, which disregard the critical contribution of the microenvironment and lack spatial information. Here, we take a holistic approach by incorporating spatial imaging phenotypes of both tumor...
Autores principales: | Wang, Haiyue, Jiang, Yuming, Li, Bailiang, Cui, Yi, Li, Dengwang, Li, Ruijiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7761227/ https://www.ncbi.nlm.nih.gov/pubmed/33260561 http://dx.doi.org/10.3390/cancers12123562 |
Ejemplares similares
-
Decentralized Learning Framework of Meta-Survival Analysis for Developing Robust Prognostic Signatures
por: Cui, Yi, et al.
Publicado: (2017) -
Spatial maps of hepatocellular carcinoma transcriptomes reveal spatial expression patterns in tumor immune microenvironment
por: Wang, Yue-fan, et al.
Publicado: (2022) -
Development and Validation of a Machine Learning Model for Detection and Classification of Tertiary Lymphoid Structures in Gastrointestinal Cancers
por: Li, Zhe, et al.
Publicado: (2023) -
The Immune Subtypes and Landscape of Gastric Cancer and to Predict Based on the Whole-Slide Images Using Deep Learning
por: Chen, Yan, et al.
Publicado: (2021) -
Single-Cell Transcriptomics Revealed Subtype-Specific Tumor Immune Microenvironments in Human Glioblastomas
por: Xiao, Yong, et al.
Publicado: (2022)