Cargando…

Susceptibility to Heart Defects in Down Syndrome Is Associated with Single Nucleotide Polymorphisms in HAS 21 Interferon Receptor Cluster and VEGFA Genes

Background: Congenital heart defects (CHDs) are present in about 40–60% of newborns with Down syndrome (DS). Patients with DS can also develop acquired cardiac disorders. Mouse models suggest that a critical 3.7 Mb region located on human chromosome 21 (HSA21) could explain the association with CHDs...

Descripción completa

Detalles Bibliográficos
Autores principales: Balistreri, Carmela Rita, Ammoscato, Claudia Leonarda, Scola, Letizia, Fragapane, Tiziana, Giarratana, Rosa Maria, Lio, Domenico, Piccione, Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7761327/
https://www.ncbi.nlm.nih.gov/pubmed/33260695
http://dx.doi.org/10.3390/genes11121428
Descripción
Sumario:Background: Congenital heart defects (CHDs) are present in about 40–60% of newborns with Down syndrome (DS). Patients with DS can also develop acquired cardiac disorders. Mouse models suggest that a critical 3.7 Mb region located on human chromosome 21 (HSA21) could explain the association with CHDs. This region includes a cluster of genes (IFNAR1, IFNAR2, IFNGR2, IL10RB) encoding for interferon receptors (IFN-Rs). Other genes located on different chromosomes, such as the vascular endothelial growth factor A (VEGFA), have been shown to be involved in cardiac defects. So, we investigated the association between single nucleotide polymorphisms (SNPs) in IFNAR2, IFNGR2, IL10RB and VEGFA genes, and the presence of CHDs or acquired cardiac defects in patients with DS. Methods: Individuals (n = 102) with DS, and age- and gender-matched controls (n = 96), were genotyped for four SNPs (rs2229207, rs2834213, rs2834167 and rs3025039) using KASPar assays. Results: We found that the IFNGR2 rs2834213 G homozygous genotype and IL10RB rs2834167G-positive genotypes were more common in patients with DSand significantly associated with heart disorders, while VEGFA rs3025039T-positive genotypes (T/*) were less prevalent in patients with CHDs. Conclusions: We identified some candidate risk SNPs for CHDs and acquired heart defects in DS. Our data suggest that a complex architecture of risk alleles with interplay effects may contribute to the high variability of DS phenotypes.