Cargando…
Gait Trajectory and Gait Phase Prediction Based on an LSTM Network
Lower body segment trajectory and gait phase prediction is crucial for the control of assistance-as-needed robotic devices, such as exoskeletons. In order for a powered exoskeleton with phase-based control to determine and provide proper assistance to the wearer during gait, we propose an approach t...
Autores principales: | Su, Binbin, Gutierrez-Farewik, Elena M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764336/ https://www.ncbi.nlm.nih.gov/pubmed/33322673 http://dx.doi.org/10.3390/s20247127 |
Ejemplares similares
-
Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units
por: Su, Binbin, et al.
Publicado: (2020) -
Locomotion Mode Transition Prediction Based on Gait-Event Identification Using Wearable Sensors and Multilayer Perceptrons
por: Su, Binbin, et al.
Publicado: (2021) -
Gait Phase Estimation by Using LSTM in IMU-Based Gait Analysis—Proof of Concept
por: Sarshar, Mustafa, et al.
Publicado: (2021) -
Gait pattern after electromechanically-assisted gait training with the Hybrid Assistive Limb and conventional gait training in sub-acute stroke rehabilitation—A subsample from a randomized controlled trial
por: Wall, Anneli, et al.
Publicado: (2023) -
Gait dynamics in the wide spectrum of children with arthrogryposis: a descriptive study
por: Eriksson, Marie, et al.
Publicado: (2015)