Cargando…
Integrated Ultrasonication and Microbubble-Assisted Enzymatic Synthesis of Fructooligosaccharides from Brown Sugar
Fructooligosaccharides (FOS) are considered prebiotics and have been widely used in various food industries as additives. Ultrasonication has been widely used to enhance food processes; however, there are few reports on ultrasound-assisted FOS synthesis. In the present study, FOS were produced from...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764430/ https://www.ncbi.nlm.nih.gov/pubmed/33321711 http://dx.doi.org/10.3390/foods9121833 |
Sumario: | Fructooligosaccharides (FOS) are considered prebiotics and have been widely used in various food industries as additives. Ultrasonication has been widely used to enhance food processes; however, there are few reports on ultrasound-assisted FOS synthesis. In the present study, FOS were produced from brown sugar using ultrasonication combined with microbubbles, and the production was optimised using a Box-Behnken experimental design. Here we showed that a combination of ultrasonication and microbubbles could boost the enzyme activity by 366%, and the reaction time was shortened by 60%. The reaction time was a significant variable affecting the FOS production. The optimum conditions were 5 min 45 s of ultrasonication and 7 min 19 s of microbubbles with a reaction time of 5 h 40 min. The maximum enzyme activity and total FOS yield were 102.51 ± 4.69 U·mL(−1) and 494.89 ± 19.98 mg·g(−1) substrate, respectively. In an enlarged production scale up to 5 L, FOS yields were slightly decreased, but the reaction time was decreased to 4 h. Hence, this technique offers a simple and useful tool for enhancing enzyme activity and reducing reaction time. We have developed a pilot technique as a convenient starting point for enhancing enzyme activity of oligosaccharide production from brown sugar. |
---|