Cargando…

Targeted Genome Mining—From Compound Discovery to Biosynthetic Pathway Elucidation

Natural products are an important source of novel investigational compounds in drug discovery. Especially in the field of antibiotics, Actinobacteria have been proven to be a reliable source for lead structures. The discovery of these natural products with activity- and structure-guided screenings h...

Descripción completa

Detalles Bibliográficos
Autores principales: Gummerlich, Nils, Rebets, Yuriy, Paulus, Constanze, Zapp, Josef, Luzhetskyy, Andriy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765855/
https://www.ncbi.nlm.nih.gov/pubmed/33352664
http://dx.doi.org/10.3390/microorganisms8122034
Descripción
Sumario:Natural products are an important source of novel investigational compounds in drug discovery. Especially in the field of antibiotics, Actinobacteria have been proven to be a reliable source for lead structures. The discovery of these natural products with activity- and structure-guided screenings has been impeded by the constant rediscovery of previously identified compounds. Additionally, a large discrepancy between produced natural products and biosynthetic potential in Actinobacteria, including representatives of the order Pseudonocardiales, has been revealed using genome sequencing. To turn this genomic potential into novel natural products, we used an approach including the in-silico pre-selection of unique biosynthetic gene clusters followed by their systematic heterologous expression. As a proof of concept, fifteen Saccharothrix espanaensis genomic library clones covering predicted biosynthetic gene clusters were chosen for expression in two heterologous hosts, Streptomyces lividans and Streptomyces albus. As a result, two novel natural products, an unusual angucyclinone pentangumycin and a new type II polyketide synthase shunt product SEK90, were identified. After purification and structure elucidation, the biosynthetic pathways leading to the formation of pentangumycin and SEK90 were deduced using mutational analysis of the biosynthetic gene cluster and feeding experiments with (13)C-labelled precursors.