In silico ranking of phenolics for therapeutic effectiveness on cancer stem cells
BACKGROUND: Cancer stem cells (CSCs) have features such as the ability to self-renew, differentiate into defined progenies and initiate the tumor growth. Treatments of cancer include drugs, chemotherapy and radiotherapy or a combination. However, treatment of cancer by various therapeutic strategies...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768647/ https://www.ncbi.nlm.nih.gov/pubmed/33371879 http://dx.doi.org/10.1186/s12859-020-03849-z |
Sumario: | BACKGROUND: Cancer stem cells (CSCs) have features such as the ability to self-renew, differentiate into defined progenies and initiate the tumor growth. Treatments of cancer include drugs, chemotherapy and radiotherapy or a combination. However, treatment of cancer by various therapeutic strategies often fail. One possible reason is that the nature of CSCs, which has stem-like properties, make it more dynamic and complex and may cause the therapeutic resistance. Another limitation is the side effects associated with the treatment of chemotherapy or radiotherapy. To explore better or alternative treatment options the current study aims to investigate the natural drug-like molecules that can be used as CSC-targeted therapy. Among various natural products, anticancer potential of phenolics is well established. We collected the 21 phytochemicals from phenolic group and their interacting CSC genes from the publicly available databases. Then a bipartite graph is constructed from the collected CSC genes along with their interacting phytochemicals from phenolic group as other. The bipartite graph is then transformed into weighted bipartite graph by considering the interaction strength between the phenolics and the CSC genes. The CSC genes are also weighted by two scores, namely, DSI (Disease Specificity Index) and DPI (Disease Pleiotropy Index). For each gene, its DSI score reflects the specific relationship with the disease and DPI score reflects the association with multiple diseases. Finally, a ranking technique is developed based on PageRank (PR) algorithm for ranking the phenolics. RESULTS: We collected 21 phytochemicals from phenolic group and 1118 CSC genes. The top ranked phenolics were evaluated by their molecular and pharmacokinetics properties and disease association networks. We selected top five ranked phenolics (Resveratrol, Curcumin, Quercetin, Epigallocatechin Gallate, and Genistein) for further examination of their oral bioavailability through molecular properties, drug likeness through pharmacokinetic properties, and associated network with CSC genes. CONCLUSION: Our PR ranking based approach is useful to rank the phenolics that are associated with CSC genes. Our results suggested some phenolics are potential molecules for CSC-related cancer treatment. |
---|