Cargando…

Protective Effect of S-Allyl Cysteine Against Neonatal Asthmatic Rats

S-Allyl cysteine (SAC), an organic compound and a natural constituent of Allium sativum, commonly known as garlic have been consumed in routine foods are known to possess various biological activities. Nevertheless, scientific evidence on the protective effect of SAC against neonatal asthmatic rats...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Li, Li, Yuning, Wang, Fang, Zhang, Xindao, Zhao, Ruiping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768841/
https://www.ncbi.nlm.nih.gov/pubmed/33488313
http://dx.doi.org/10.1177/1559325820982189
Descripción
Sumario:S-Allyl cysteine (SAC), an organic compound and a natural constituent of Allium sativum, commonly known as garlic have been consumed in routine foods are known to possess various biological activities. Nevertheless, scientific evidence on the protective effect of SAC against neonatal asthmatic rats is not available. Hence, the present study aimed at investigating the anti-asthmatic activity of SAC in neonatal asthmatic rats using Wistar rats. The study conducted in 4 groups consists of normal control rats, asthma-induced, asthma animals administered with SAC (25 mg/kg), and SAC control. At the end of the experimental period, inflammatory cells in bronchoalveolar lavage fluid (BALF), inflammatory markers, fibrinogen level, activated partial thromboplastin time, coagulation factor activity, and histopathology were elucidated. The current investigation exhibits that SAC significantly reduced the total leukocytes, with restored fibrinogen level, and activated partial thromboplastin time. In addition, the levels of inflammatory cytokines such as TNF-α (tumor necrosis factor- α), IL-6 (Interleukin 6), and IL-1β have also attenuated in SAC treated animals. Furthermore, the mRNA expression levels of COX2 (cyclooxygenase-2), MCP-1 (monocyte chemoattractant protein-1), RANTES (regulated upon activation, normal T cell expressed and secreted), and eotaxin were reduced in SAC treated animals. Treatment of rats with SAC significantly reduced inflammation and eosinophil infiltration in the lungs. These results suggest that SAC exert protection in neonatal asthmatic rats suffering from acute or chronic inflammation by inducing anti-inflammatory and cell-protective responses.