Cargando…
Targeting CD38-dependent NAD(+) metabolism to mitigate multiple organ fibrosis
The processes underlying synchronous multiple organ fibrosis in systemic sclerosis (SSc) remain poorly understood. Age-related pathologies are associated with organismal decline in nicotinamide adenine dinucleotide (NAD(+)) that is due to dysregulation of NAD(+) homeostasis and involves the NADase C...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770554/ https://www.ncbi.nlm.nih.gov/pubmed/33385109 http://dx.doi.org/10.1016/j.isci.2020.101902 |
_version_ | 1783629533940809728 |
---|---|
author | Shi, Bo Wang, Wenxia Korman, Benjamin Kai, Li Wang, Qianqian Wei, Jun Bale, Swarna Marangoni, Roberta Goncalves Bhattacharyya, Swati Miller, Stephen Xu, Dan Akbarpour, Mahzad Cheresh, Paul Proccissi, Daniele Gursel, Demirkan Espindola-Netto, Jair Machado Chini, Claudia C.S. de Oliveira, Guilherme C. Gudjonsson, Johann E. Chini, Eduardo N. Varga, John |
author_facet | Shi, Bo Wang, Wenxia Korman, Benjamin Kai, Li Wang, Qianqian Wei, Jun Bale, Swarna Marangoni, Roberta Goncalves Bhattacharyya, Swati Miller, Stephen Xu, Dan Akbarpour, Mahzad Cheresh, Paul Proccissi, Daniele Gursel, Demirkan Espindola-Netto, Jair Machado Chini, Claudia C.S. de Oliveira, Guilherme C. Gudjonsson, Johann E. Chini, Eduardo N. Varga, John |
author_sort | Shi, Bo |
collection | PubMed |
description | The processes underlying synchronous multiple organ fibrosis in systemic sclerosis (SSc) remain poorly understood. Age-related pathologies are associated with organismal decline in nicotinamide adenine dinucleotide (NAD(+)) that is due to dysregulation of NAD(+) homeostasis and involves the NADase CD38. We now show that CD38 is upregulated in patients with diffuse cutaneous SSc, and CD38 levels in the skin associate with molecular fibrosis signatures, as well as clinical fibrosis scores, while expression of key NAD(+)-synthesizing enzymes is unaltered. Boosting NAD(+) via genetic or pharmacological CD38 targeting or NAD(+) precursor supplementation protected mice from skin, lung, and peritoneal fibrosis. In mechanistic experiments, CD38 was found to reduce NAD(+) levels and sirtuin activity to augment cellular fibrotic responses, while inhibiting CD38 had the opposite effect. Thus, we identify CD38 upregulation and resulting disrupted NAD(+) homeostasis as a fundamental mechanism driving fibrosis in SSc, suggesting that CD38 might represent a novel therapeutic target. |
format | Online Article Text |
id | pubmed-7770554 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-77705542020-12-30 Targeting CD38-dependent NAD(+) metabolism to mitigate multiple organ fibrosis Shi, Bo Wang, Wenxia Korman, Benjamin Kai, Li Wang, Qianqian Wei, Jun Bale, Swarna Marangoni, Roberta Goncalves Bhattacharyya, Swati Miller, Stephen Xu, Dan Akbarpour, Mahzad Cheresh, Paul Proccissi, Daniele Gursel, Demirkan Espindola-Netto, Jair Machado Chini, Claudia C.S. de Oliveira, Guilherme C. Gudjonsson, Johann E. Chini, Eduardo N. Varga, John iScience Article The processes underlying synchronous multiple organ fibrosis in systemic sclerosis (SSc) remain poorly understood. Age-related pathologies are associated with organismal decline in nicotinamide adenine dinucleotide (NAD(+)) that is due to dysregulation of NAD(+) homeostasis and involves the NADase CD38. We now show that CD38 is upregulated in patients with diffuse cutaneous SSc, and CD38 levels in the skin associate with molecular fibrosis signatures, as well as clinical fibrosis scores, while expression of key NAD(+)-synthesizing enzymes is unaltered. Boosting NAD(+) via genetic or pharmacological CD38 targeting or NAD(+) precursor supplementation protected mice from skin, lung, and peritoneal fibrosis. In mechanistic experiments, CD38 was found to reduce NAD(+) levels and sirtuin activity to augment cellular fibrotic responses, while inhibiting CD38 had the opposite effect. Thus, we identify CD38 upregulation and resulting disrupted NAD(+) homeostasis as a fundamental mechanism driving fibrosis in SSc, suggesting that CD38 might represent a novel therapeutic target. Elsevier 2020-12-07 /pmc/articles/PMC7770554/ /pubmed/33385109 http://dx.doi.org/10.1016/j.isci.2020.101902 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Shi, Bo Wang, Wenxia Korman, Benjamin Kai, Li Wang, Qianqian Wei, Jun Bale, Swarna Marangoni, Roberta Goncalves Bhattacharyya, Swati Miller, Stephen Xu, Dan Akbarpour, Mahzad Cheresh, Paul Proccissi, Daniele Gursel, Demirkan Espindola-Netto, Jair Machado Chini, Claudia C.S. de Oliveira, Guilherme C. Gudjonsson, Johann E. Chini, Eduardo N. Varga, John Targeting CD38-dependent NAD(+) metabolism to mitigate multiple organ fibrosis |
title | Targeting CD38-dependent NAD(+) metabolism to mitigate multiple organ fibrosis |
title_full | Targeting CD38-dependent NAD(+) metabolism to mitigate multiple organ fibrosis |
title_fullStr | Targeting CD38-dependent NAD(+) metabolism to mitigate multiple organ fibrosis |
title_full_unstemmed | Targeting CD38-dependent NAD(+) metabolism to mitigate multiple organ fibrosis |
title_short | Targeting CD38-dependent NAD(+) metabolism to mitigate multiple organ fibrosis |
title_sort | targeting cd38-dependent nad(+) metabolism to mitigate multiple organ fibrosis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770554/ https://www.ncbi.nlm.nih.gov/pubmed/33385109 http://dx.doi.org/10.1016/j.isci.2020.101902 |
work_keys_str_mv | AT shibo targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis AT wangwenxia targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis AT kormanbenjamin targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis AT kaili targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis AT wangqianqian targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis AT weijun targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis AT baleswarna targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis AT marangonirobertagoncalves targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis AT bhattacharyyaswati targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis AT millerstephen targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis AT xudan targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis AT akbarpourmahzad targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis AT chereshpaul targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis AT proccissidaniele targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis AT gurseldemirkan targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis AT espindolanettojairmachado targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis AT chiniclaudiacs targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis AT deoliveiraguilhermec targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis AT gudjonssonjohanne targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis AT chinieduardon targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis AT vargajohn targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis |