Cargando…

Targeting CD38-dependent NAD(+) metabolism to mitigate multiple organ fibrosis

The processes underlying synchronous multiple organ fibrosis in systemic sclerosis (SSc) remain poorly understood. Age-related pathologies are associated with organismal decline in nicotinamide adenine dinucleotide (NAD(+)) that is due to dysregulation of NAD(+) homeostasis and involves the NADase C...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Bo, Wang, Wenxia, Korman, Benjamin, Kai, Li, Wang, Qianqian, Wei, Jun, Bale, Swarna, Marangoni, Roberta Goncalves, Bhattacharyya, Swati, Miller, Stephen, Xu, Dan, Akbarpour, Mahzad, Cheresh, Paul, Proccissi, Daniele, Gursel, Demirkan, Espindola-Netto, Jair Machado, Chini, Claudia C.S., de Oliveira, Guilherme C., Gudjonsson, Johann E., Chini, Eduardo N., Varga, John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770554/
https://www.ncbi.nlm.nih.gov/pubmed/33385109
http://dx.doi.org/10.1016/j.isci.2020.101902
_version_ 1783629533940809728
author Shi, Bo
Wang, Wenxia
Korman, Benjamin
Kai, Li
Wang, Qianqian
Wei, Jun
Bale, Swarna
Marangoni, Roberta Goncalves
Bhattacharyya, Swati
Miller, Stephen
Xu, Dan
Akbarpour, Mahzad
Cheresh, Paul
Proccissi, Daniele
Gursel, Demirkan
Espindola-Netto, Jair Machado
Chini, Claudia C.S.
de Oliveira, Guilherme C.
Gudjonsson, Johann E.
Chini, Eduardo N.
Varga, John
author_facet Shi, Bo
Wang, Wenxia
Korman, Benjamin
Kai, Li
Wang, Qianqian
Wei, Jun
Bale, Swarna
Marangoni, Roberta Goncalves
Bhattacharyya, Swati
Miller, Stephen
Xu, Dan
Akbarpour, Mahzad
Cheresh, Paul
Proccissi, Daniele
Gursel, Demirkan
Espindola-Netto, Jair Machado
Chini, Claudia C.S.
de Oliveira, Guilherme C.
Gudjonsson, Johann E.
Chini, Eduardo N.
Varga, John
author_sort Shi, Bo
collection PubMed
description The processes underlying synchronous multiple organ fibrosis in systemic sclerosis (SSc) remain poorly understood. Age-related pathologies are associated with organismal decline in nicotinamide adenine dinucleotide (NAD(+)) that is due to dysregulation of NAD(+) homeostasis and involves the NADase CD38. We now show that CD38 is upregulated in patients with diffuse cutaneous SSc, and CD38 levels in the skin associate with molecular fibrosis signatures, as well as clinical fibrosis scores, while expression of key NAD(+)-synthesizing enzymes is unaltered. Boosting NAD(+) via genetic or pharmacological CD38 targeting or NAD(+) precursor supplementation protected mice from skin, lung, and peritoneal fibrosis. In mechanistic experiments, CD38 was found to reduce NAD(+) levels and sirtuin activity to augment cellular fibrotic responses, while inhibiting CD38 had the opposite effect. Thus, we identify CD38 upregulation and resulting disrupted NAD(+) homeostasis as a fundamental mechanism driving fibrosis in SSc, suggesting that CD38 might represent a novel therapeutic target.
format Online
Article
Text
id pubmed-7770554
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-77705542020-12-30 Targeting CD38-dependent NAD(+) metabolism to mitigate multiple organ fibrosis Shi, Bo Wang, Wenxia Korman, Benjamin Kai, Li Wang, Qianqian Wei, Jun Bale, Swarna Marangoni, Roberta Goncalves Bhattacharyya, Swati Miller, Stephen Xu, Dan Akbarpour, Mahzad Cheresh, Paul Proccissi, Daniele Gursel, Demirkan Espindola-Netto, Jair Machado Chini, Claudia C.S. de Oliveira, Guilherme C. Gudjonsson, Johann E. Chini, Eduardo N. Varga, John iScience Article The processes underlying synchronous multiple organ fibrosis in systemic sclerosis (SSc) remain poorly understood. Age-related pathologies are associated with organismal decline in nicotinamide adenine dinucleotide (NAD(+)) that is due to dysregulation of NAD(+) homeostasis and involves the NADase CD38. We now show that CD38 is upregulated in patients with diffuse cutaneous SSc, and CD38 levels in the skin associate with molecular fibrosis signatures, as well as clinical fibrosis scores, while expression of key NAD(+)-synthesizing enzymes is unaltered. Boosting NAD(+) via genetic or pharmacological CD38 targeting or NAD(+) precursor supplementation protected mice from skin, lung, and peritoneal fibrosis. In mechanistic experiments, CD38 was found to reduce NAD(+) levels and sirtuin activity to augment cellular fibrotic responses, while inhibiting CD38 had the opposite effect. Thus, we identify CD38 upregulation and resulting disrupted NAD(+) homeostasis as a fundamental mechanism driving fibrosis in SSc, suggesting that CD38 might represent a novel therapeutic target. Elsevier 2020-12-07 /pmc/articles/PMC7770554/ /pubmed/33385109 http://dx.doi.org/10.1016/j.isci.2020.101902 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Shi, Bo
Wang, Wenxia
Korman, Benjamin
Kai, Li
Wang, Qianqian
Wei, Jun
Bale, Swarna
Marangoni, Roberta Goncalves
Bhattacharyya, Swati
Miller, Stephen
Xu, Dan
Akbarpour, Mahzad
Cheresh, Paul
Proccissi, Daniele
Gursel, Demirkan
Espindola-Netto, Jair Machado
Chini, Claudia C.S.
de Oliveira, Guilherme C.
Gudjonsson, Johann E.
Chini, Eduardo N.
Varga, John
Targeting CD38-dependent NAD(+) metabolism to mitigate multiple organ fibrosis
title Targeting CD38-dependent NAD(+) metabolism to mitigate multiple organ fibrosis
title_full Targeting CD38-dependent NAD(+) metabolism to mitigate multiple organ fibrosis
title_fullStr Targeting CD38-dependent NAD(+) metabolism to mitigate multiple organ fibrosis
title_full_unstemmed Targeting CD38-dependent NAD(+) metabolism to mitigate multiple organ fibrosis
title_short Targeting CD38-dependent NAD(+) metabolism to mitigate multiple organ fibrosis
title_sort targeting cd38-dependent nad(+) metabolism to mitigate multiple organ fibrosis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770554/
https://www.ncbi.nlm.nih.gov/pubmed/33385109
http://dx.doi.org/10.1016/j.isci.2020.101902
work_keys_str_mv AT shibo targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis
AT wangwenxia targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis
AT kormanbenjamin targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis
AT kaili targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis
AT wangqianqian targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis
AT weijun targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis
AT baleswarna targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis
AT marangonirobertagoncalves targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis
AT bhattacharyyaswati targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis
AT millerstephen targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis
AT xudan targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis
AT akbarpourmahzad targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis
AT chereshpaul targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis
AT proccissidaniele targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis
AT gurseldemirkan targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis
AT espindolanettojairmachado targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis
AT chiniclaudiacs targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis
AT deoliveiraguilhermec targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis
AT gudjonssonjohanne targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis
AT chinieduardon targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis
AT vargajohn targetingcd38dependentnadmetabolismtomitigatemultipleorganfibrosis