Cargando…

Triphenylphosphonium derivatives disrupt metabolism and inhibit melanoma growth in vivo when delivered via a thermosensitive hydrogel

Despite dramatic improvements in outcomes arising from the introduction of targeted therapies and immunotherapies, metastatic melanoma is a highly resistant form of cancer with 5 year survival rates of <35%. Drug resistance is frequently reported to be associated with changes in oxidative metabol...

Descripción completa

Detalles Bibliográficos
Autores principales: Kloepping, Kyle C., Kraus, Alora S., Hedlund, Devin K., Gnade, Colette M., Wagner, Brett A., McCormick, Michael L., Fath, Melissa A., Seol, Dongrim, Lim, Tae-Hong, Buettner, Garry R., Goswami, Prabhat C., Pigge, F. Christopher, Spitz, Douglas R., Schultz, Michael K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7773266/
https://www.ncbi.nlm.nih.gov/pubmed/33378390
http://dx.doi.org/10.1371/journal.pone.0244540
Descripción
Sumario:Despite dramatic improvements in outcomes arising from the introduction of targeted therapies and immunotherapies, metastatic melanoma is a highly resistant form of cancer with 5 year survival rates of <35%. Drug resistance is frequently reported to be associated with changes in oxidative metabolism that lead to malignancy that is non-responsive to current treatments. The current report demonstrates that triphenylphosphonium(TPP)-based lipophilic cations can be utilized to induce cytotoxicity in pre-clinical models of malignant melanoma by disrupting mitochondrial metabolism. In vitro experiments demonstrated that TPP-derivatives modified with aliphatic side chains accumulated in melanoma cell mitochondria; disrupted mitochondrial metabolism; led to increases in steady-state levels of reactive oxygen species; decreased total glutathione; increased the fraction of glutathione disulfide; and caused cell killing by a thiol-dependent process that could be rescued by N-acetylcysteine. Furthermore, TPP-derivative-induced melanoma toxicity was enhanced by glutathione depletion (using buthionine sulfoximine) as well as inhibition of thioredoxin reductase (using auranofin). In addition, there was a structure-activity relationship between the aliphatic side-chain length of TPP-derivatives (5–16 carbons), where longer carbon chains increased melanoma cell metabolic disruption and cell killing. In vivo bio-distribution experiments showed that intratumoral administration of a C(14)-TPP-derivative (12-carbon aliphatic chain), using a slow-release thermosensitive hydrogel as a delivery vehicle, localized the drug at the melanoma tumor site. There, it was observed to persist and decrease the growth rate of melanoma tumors. These results demonstrate that TPP-derivatives selectively induce thiol-dependent metabolic oxidative stress and cell killing in malignant melanoma and support the hypothesis that a hydrogel-based TPP-derivative delivery system could represent a therapeutic drug-delivery strategy for melanoma.