Cargando…
MFG-E8-derived peptide attenuates inflammation and injury after renal ischemia-reperfusion in mice
BACKGROUND: Renal ischemia-reperfusion (renal I/R) injury may lead to acute kidney injury (AKI). After renal I/R, proinflammatory mediators cause immune cell infiltration and further injury. Milk fat globule-epidermal growth factor-factor 8 (MFG-E8) is a protein involved in cell-cell and cell-matrix...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7773867/ https://www.ncbi.nlm.nih.gov/pubmed/33409388 http://dx.doi.org/10.1016/j.heliyon.2020.e05794 |
Sumario: | BACKGROUND: Renal ischemia-reperfusion (renal I/R) injury may lead to acute kidney injury (AKI). After renal I/R, proinflammatory mediators cause immune cell infiltration and further injury. Milk fat globule-epidermal growth factor-factor 8 (MFG-E8) is a protein involved in cell-cell and cell-matrix interactions. MSP68 is an MFG-E8-derived peptide that inhibits neutrophil adhesion and migration. Here, we evaluated whether MSP68 attenuates renal I/R injury. MATERIALS AND METHODS: Adult C57BL/6 mice were subjected to bilateral renal ischemia for 30 min followed by reperfusion and intraperitoneal administration of saline (vehicle) or MSP68 (5 mg/kg). Sham animals underwent laparotomy without renal I/R. The blood collected and studied for BUN, creatinine, and LDH by colorimetry. The kidneys were analyzed for IL-6 and TNFα by qPCR, ELISA, histological injury, and apoptosis by TUNEL. RESULTS: At 24 h after surgery, serum levels of BUN, creatinine, and LDH were markedly higher in vehicle-treated renal I/R mice than in sham mice, but significantly lower in MSP68-treated renal I/R mice. Similarly, compared to sham, renal levels of IL-6 mRNA and protein and TNFα protein were markedly higher in vehicle-treated renal I/R mice, but significantly lower in MSP68-treated renal I/R mice. Vehicle-treated renal I/R mice also had severe renal tubular histological injury, which was significantly lower in MSP68-treated renal I/R mice. Additionally, the kidneys of vehicle-treated renal I/R mice had a 93-fold increase in TUNEL-positive cells, which were reduced by 35% in mice treated with MSP68. CONCLUSION: MSP68 has the potential to be developed as novel therapeutic agent for patients with AKI. |
---|