Cargando…
Recency-Weighted Statistical Modeling Approach to Attribute Illnesses Caused by 4 Pathogens to Food Sources Using Outbreak Data, United States
Foodborne illness source attribution is foundational to a risk-based food safety system. We describe a method for attributing US foodborne illnesses caused by nontyphoidal Salmonella enterica, Escherichia coli O157, Listeria monocytogenes, and Campylobacter to 17 food categories using statistical mo...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Centers for Disease Control and Prevention
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7774545/ https://www.ncbi.nlm.nih.gov/pubmed/33350919 http://dx.doi.org/10.3201/eid2701.203832 |
_version_ | 1783630288384950272 |
---|---|
author | Batz, Michael B. Richardson, LaTonia C. Bazaco, Michael C. Parker, Cary Chen Chirtel, Stuart J. Cole, Dana Golden, Neal J. Griffin, Patricia M. Gu, Weidong Schmitt, Susan K. Wolpert, Beverly J. Kufel, Joanna S. Zablotsky Hoekstra, R. Michael |
author_facet | Batz, Michael B. Richardson, LaTonia C. Bazaco, Michael C. Parker, Cary Chen Chirtel, Stuart J. Cole, Dana Golden, Neal J. Griffin, Patricia M. Gu, Weidong Schmitt, Susan K. Wolpert, Beverly J. Kufel, Joanna S. Zablotsky Hoekstra, R. Michael |
author_sort | Batz, Michael B. |
collection | PubMed |
description | Foodborne illness source attribution is foundational to a risk-based food safety system. We describe a method for attributing US foodborne illnesses caused by nontyphoidal Salmonella enterica, Escherichia coli O157, Listeria monocytogenes, and Campylobacter to 17 food categories using statistical modeling of outbreak data. This method adjusts for epidemiologic factors associated with outbreak size, down-weights older outbreaks, and estimates credibility intervals. On the basis of 952 reported outbreaks and 32,802 illnesses during 1998–2012, we attribute 77% of foodborne Salmonella illnesses to 7 food categories (seeded vegetables, eggs, chicken, other produce, pork, beef, and fruits), 82% of E. coli O157 illnesses to beef and vegetable row crops, 81% of L. monocytogenes illnesses to fruits and dairy, and 74% of Campylobacter illnesses to dairy and chicken. However, because Campylobacter outbreaks probably overrepresent dairy as a source of nonoutbreak campylobacteriosis, we caution against using these Campylobacter attribution estimates without further adjustment. |
format | Online Article Text |
id | pubmed-7774545 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Centers for Disease Control and Prevention |
record_format | MEDLINE/PubMed |
spelling | pubmed-77745452021-01-01 Recency-Weighted Statistical Modeling Approach to Attribute Illnesses Caused by 4 Pathogens to Food Sources Using Outbreak Data, United States Batz, Michael B. Richardson, LaTonia C. Bazaco, Michael C. Parker, Cary Chen Chirtel, Stuart J. Cole, Dana Golden, Neal J. Griffin, Patricia M. Gu, Weidong Schmitt, Susan K. Wolpert, Beverly J. Kufel, Joanna S. Zablotsky Hoekstra, R. Michael Emerg Infect Dis Research Foodborne illness source attribution is foundational to a risk-based food safety system. We describe a method for attributing US foodborne illnesses caused by nontyphoidal Salmonella enterica, Escherichia coli O157, Listeria monocytogenes, and Campylobacter to 17 food categories using statistical modeling of outbreak data. This method adjusts for epidemiologic factors associated with outbreak size, down-weights older outbreaks, and estimates credibility intervals. On the basis of 952 reported outbreaks and 32,802 illnesses during 1998–2012, we attribute 77% of foodborne Salmonella illnesses to 7 food categories (seeded vegetables, eggs, chicken, other produce, pork, beef, and fruits), 82% of E. coli O157 illnesses to beef and vegetable row crops, 81% of L. monocytogenes illnesses to fruits and dairy, and 74% of Campylobacter illnesses to dairy and chicken. However, because Campylobacter outbreaks probably overrepresent dairy as a source of nonoutbreak campylobacteriosis, we caution against using these Campylobacter attribution estimates without further adjustment. Centers for Disease Control and Prevention 2021-01 /pmc/articles/PMC7774545/ /pubmed/33350919 http://dx.doi.org/10.3201/eid2701.203832 Text en https://creativecommons.org/licenses/by/4.0/This is a publication of the U.S. Government. This publication is in the public domain and is therefore without copyright. All text from this work may be reprinted freely. Use of these materials should be properly cited. |
spellingShingle | Research Batz, Michael B. Richardson, LaTonia C. Bazaco, Michael C. Parker, Cary Chen Chirtel, Stuart J. Cole, Dana Golden, Neal J. Griffin, Patricia M. Gu, Weidong Schmitt, Susan K. Wolpert, Beverly J. Kufel, Joanna S. Zablotsky Hoekstra, R. Michael Recency-Weighted Statistical Modeling Approach to Attribute Illnesses Caused by 4 Pathogens to Food Sources Using Outbreak Data, United States |
title | Recency-Weighted Statistical Modeling Approach to Attribute Illnesses Caused by 4 Pathogens to Food Sources Using Outbreak Data, United States |
title_full | Recency-Weighted Statistical Modeling Approach to Attribute Illnesses Caused by 4 Pathogens to Food Sources Using Outbreak Data, United States |
title_fullStr | Recency-Weighted Statistical Modeling Approach to Attribute Illnesses Caused by 4 Pathogens to Food Sources Using Outbreak Data, United States |
title_full_unstemmed | Recency-Weighted Statistical Modeling Approach to Attribute Illnesses Caused by 4 Pathogens to Food Sources Using Outbreak Data, United States |
title_short | Recency-Weighted Statistical Modeling Approach to Attribute Illnesses Caused by 4 Pathogens to Food Sources Using Outbreak Data, United States |
title_sort | recency-weighted statistical modeling approach to attribute illnesses caused by 4 pathogens to food sources using outbreak data, united states |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7774545/ https://www.ncbi.nlm.nih.gov/pubmed/33350919 http://dx.doi.org/10.3201/eid2701.203832 |
work_keys_str_mv | AT batzmichaelb recencyweightedstatisticalmodelingapproachtoattributeillnessescausedby4pathogenstofoodsourcesusingoutbreakdataunitedstates AT richardsonlatoniac recencyweightedstatisticalmodelingapproachtoattributeillnessescausedby4pathogenstofoodsourcesusingoutbreakdataunitedstates AT bazacomichaelc recencyweightedstatisticalmodelingapproachtoattributeillnessescausedby4pathogenstofoodsourcesusingoutbreakdataunitedstates AT parkercarychen recencyweightedstatisticalmodelingapproachtoattributeillnessescausedby4pathogenstofoodsourcesusingoutbreakdataunitedstates AT chirtelstuartj recencyweightedstatisticalmodelingapproachtoattributeillnessescausedby4pathogenstofoodsourcesusingoutbreakdataunitedstates AT coledana recencyweightedstatisticalmodelingapproachtoattributeillnessescausedby4pathogenstofoodsourcesusingoutbreakdataunitedstates AT goldennealj recencyweightedstatisticalmodelingapproachtoattributeillnessescausedby4pathogenstofoodsourcesusingoutbreakdataunitedstates AT griffinpatriciam recencyweightedstatisticalmodelingapproachtoattributeillnessescausedby4pathogenstofoodsourcesusingoutbreakdataunitedstates AT guweidong recencyweightedstatisticalmodelingapproachtoattributeillnessescausedby4pathogenstofoodsourcesusingoutbreakdataunitedstates AT schmittsusank recencyweightedstatisticalmodelingapproachtoattributeillnessescausedby4pathogenstofoodsourcesusingoutbreakdataunitedstates AT wolpertbeverlyj recencyweightedstatisticalmodelingapproachtoattributeillnessescausedby4pathogenstofoodsourcesusingoutbreakdataunitedstates AT kufeljoannaszablotsky recencyweightedstatisticalmodelingapproachtoattributeillnessescausedby4pathogenstofoodsourcesusingoutbreakdataunitedstates AT hoekstrarmichael recencyweightedstatisticalmodelingapproachtoattributeillnessescausedby4pathogenstofoodsourcesusingoutbreakdataunitedstates |