Cargando…

1616. Mechanism of Thrombocytopenia Induced by Oxazolidinones Antibiotics (Linezolid, Tedizolid): Demonstration of Impairment of Megakaryocyte Differentiation From Human Hematopoietic Stem Cells associated with Mitochondrial Toxicity

BACKGROUND: Linezolid causes thrombocytopenia, which limits its use. In cell culture and in tissues from treated patients, linezolid impairs mitochondrial protein synthesis (due to structural similarities and common binding sites between bacterial and mitochondrial ribosomes). Recent studies have sh...

Descripción completa

Detalles Bibliográficos
Autores principales: Tulkens, Paul M, Milosevic, Tamara V, Vertenoeil, Gaëlle, Vainchenker, William, Constantinescu, Stefan N, Van Bambeke, Françoise
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7776155/
http://dx.doi.org/10.1093/ofid/ofaa439.1796
Descripción
Sumario:BACKGROUND: Linezolid causes thrombocytopenia, which limits its use. In cell culture and in tissues from treated patients, linezolid impairs mitochondrial protein synthesis (due to structural similarities and common binding sites between bacterial and mitochondrial ribosomes). Recent studies have shown that mitochondria act as a key relay in the process leading from activation of the thrombopoietin receptor to megakaryocytes differentiation. METHODS: Validated ex-vivo human model of hematopoietic stem cells (HSC) differentiation for (i) measuring megakaryocytes, granulocyte-monocytes, and burst-forming unit-erythroids colony formation; (ii) differentiation into megakaryocytes (conversion of CD34+ into CD41+/CD42+ cells; morphology) and proplatelets formation, (iii) mitochondrial toxicity (electron microscopy; cytochrome c-oxidase activity [partly encoded by the mitochondrial genome]). RESULTS: We show that linezolid (and the recently approved tedizolid), both at concentrations corresponding to their human serum concentrations) inhibit the maturation of HSC into fully differentiated megakaryocytes (CD41 and CD42-positive cells) and the formation of proplatelets. Optic and Electron microscopy) showed an impairment of the formation of typical megakaryocytes (lack of large polylobulated nuclei and of intracellular demarcation membrane system [required for platelet formation]), together with disappearance of the internal structure of mitochondria. Biochemical studies showed a complete suppression of the activity of cytochrome c-oxidase (a key enzyme of the mitochondrial respiratory chain). CONCLUSION: Our study provides for the first time insights in the mechanism of thrombocytopenia induced by linezolid and tedizolid, identifying mitochondria as their target and showing that the drugs will impair the differentiation of hematopoietic stem cells into mature platelets-releasing megakaryocytes. It illustrates how mitochondria dysfunction may play a key role in toxicology and diseases, while paving the way for rational approaches for the design and screening of less toxic derivatives for the benefit of future patients. DISCLOSURES: Paul M. Tulkens, MD, PhD, Bayer (Consultant, Advisor or Review Panel member, Speaker’s Bureau)Menarini (Speaker’s Bureau)Merck (Advisor or Review Panel member, Speaker’s Bureau)Trius (now part of Merck) (Advisor or Review Panel member, Research Grant or Support) Françoise Van Bambeke, PharmD, PhD, Bayer (Speaker’s Bureau)