Cargando…
Immunomodulation by systemic administration of human-induced pluripotent stem cell-derived mesenchymal stromal cells to enhance the therapeutic efficacy of cell-based therapy for treatment of myocardial infarction
Rationale: Poor survival and engraftment are major hurdles of stem cell therapy in the treatment of myocardial infarction (MI). We sought to determine whether pre-transplantation systemic intravenous administration of human induced pluripotent stem cell (hiPSC)-derived mesenchymal stromal cells (hiP...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7778603/ https://www.ncbi.nlm.nih.gov/pubmed/33408772 http://dx.doi.org/10.7150/thno.46119 |
_version_ | 1783631163006386176 |
---|---|
author | Sun, Si-Jia Lai, Wing-Hon Jiang, Yu Zhen, Zhe Wei, Rui Lian, Qizhou Liao, Song-Yan Tse, Hung-Fat |
author_facet | Sun, Si-Jia Lai, Wing-Hon Jiang, Yu Zhen, Zhe Wei, Rui Lian, Qizhou Liao, Song-Yan Tse, Hung-Fat |
author_sort | Sun, Si-Jia |
collection | PubMed |
description | Rationale: Poor survival and engraftment are major hurdles of stem cell therapy in the treatment of myocardial infarction (MI). We sought to determine whether pre-transplantation systemic intravenous administration of human induced pluripotent stem cell (hiPSC)-derived mesenchymal stromal cells (hiPSC-MSCs) could improve the survival of hiPSC-MSCs or hiPSC-derived cardiomyocytes (hiPSC-CMs) following direct intramyocardial transplantation in a mouse model of MI. Methods: Mice were randomized to undergo intravenous administration of saline or 5×10(5) hiPSC-MSCs one week prior to MI, induced by ligation of the left anterior descending coronary artery. Mice were further assigned to undergo direct intramyocardial transplantation of hiPSC-MSCs (1×10(6)) or hiPSC-CMs (1×10(6)) 10 minutes following MI. Echocardiographic and invasive hemodynamic assessment were performed to determine cardiac function. In-vivo fluorescent imaging analysis, immunofluorescence staining and polymerase chain reaction were performed to detect cell engraftment. Flow cytometry of splenic regulatory T cells (Tregs) and natural killer (NK) cells was performed to assess the immunomodulatory effects. Results: Pre-transplantation systemic administration of hiPSC-MSCs increased systemic Tregs activation, decreased the number of splenic NK cells and inflammation, and enhanced survival of transplanted hiPSC-MSCs and hiPSC-CMs. These improvements were associated with increased neovascularization and decreased myocardial inflammation and apoptosis at the peri-infract zone with consequent improved left ventricular function four weeks later. Co-culture of splenic CD4 cells with hiPSC-MSCs also modulated their cytokine expression profile with a decreased level of interferon-γ, tumor necrosis factor-α, and interleukin (IL)-17A, but not IL-2, IL-6 and IL-10. Conclusion: Pre-transplantation systemic intravenous administration of hiPSC-MSCs induced immunomodulation and facilitated the survival of intramyocardially transplanted cells to improve cardiac function in MI. |
format | Online Article Text |
id | pubmed-7778603 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-77786032021-01-05 Immunomodulation by systemic administration of human-induced pluripotent stem cell-derived mesenchymal stromal cells to enhance the therapeutic efficacy of cell-based therapy for treatment of myocardial infarction Sun, Si-Jia Lai, Wing-Hon Jiang, Yu Zhen, Zhe Wei, Rui Lian, Qizhou Liao, Song-Yan Tse, Hung-Fat Theranostics Research Paper Rationale: Poor survival and engraftment are major hurdles of stem cell therapy in the treatment of myocardial infarction (MI). We sought to determine whether pre-transplantation systemic intravenous administration of human induced pluripotent stem cell (hiPSC)-derived mesenchymal stromal cells (hiPSC-MSCs) could improve the survival of hiPSC-MSCs or hiPSC-derived cardiomyocytes (hiPSC-CMs) following direct intramyocardial transplantation in a mouse model of MI. Methods: Mice were randomized to undergo intravenous administration of saline or 5×10(5) hiPSC-MSCs one week prior to MI, induced by ligation of the left anterior descending coronary artery. Mice were further assigned to undergo direct intramyocardial transplantation of hiPSC-MSCs (1×10(6)) or hiPSC-CMs (1×10(6)) 10 minutes following MI. Echocardiographic and invasive hemodynamic assessment were performed to determine cardiac function. In-vivo fluorescent imaging analysis, immunofluorescence staining and polymerase chain reaction were performed to detect cell engraftment. Flow cytometry of splenic regulatory T cells (Tregs) and natural killer (NK) cells was performed to assess the immunomodulatory effects. Results: Pre-transplantation systemic administration of hiPSC-MSCs increased systemic Tregs activation, decreased the number of splenic NK cells and inflammation, and enhanced survival of transplanted hiPSC-MSCs and hiPSC-CMs. These improvements were associated with increased neovascularization and decreased myocardial inflammation and apoptosis at the peri-infract zone with consequent improved left ventricular function four weeks later. Co-culture of splenic CD4 cells with hiPSC-MSCs also modulated their cytokine expression profile with a decreased level of interferon-γ, tumor necrosis factor-α, and interleukin (IL)-17A, but not IL-2, IL-6 and IL-10. Conclusion: Pre-transplantation systemic intravenous administration of hiPSC-MSCs induced immunomodulation and facilitated the survival of intramyocardially transplanted cells to improve cardiac function in MI. Ivyspring International Publisher 2021-01-01 /pmc/articles/PMC7778603/ /pubmed/33408772 http://dx.doi.org/10.7150/thno.46119 Text en © The author(s) This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Research Paper Sun, Si-Jia Lai, Wing-Hon Jiang, Yu Zhen, Zhe Wei, Rui Lian, Qizhou Liao, Song-Yan Tse, Hung-Fat Immunomodulation by systemic administration of human-induced pluripotent stem cell-derived mesenchymal stromal cells to enhance the therapeutic efficacy of cell-based therapy for treatment of myocardial infarction |
title | Immunomodulation by systemic administration of human-induced pluripotent stem cell-derived mesenchymal stromal cells to enhance the therapeutic efficacy of cell-based therapy for treatment of myocardial infarction |
title_full | Immunomodulation by systemic administration of human-induced pluripotent stem cell-derived mesenchymal stromal cells to enhance the therapeutic efficacy of cell-based therapy for treatment of myocardial infarction |
title_fullStr | Immunomodulation by systemic administration of human-induced pluripotent stem cell-derived mesenchymal stromal cells to enhance the therapeutic efficacy of cell-based therapy for treatment of myocardial infarction |
title_full_unstemmed | Immunomodulation by systemic administration of human-induced pluripotent stem cell-derived mesenchymal stromal cells to enhance the therapeutic efficacy of cell-based therapy for treatment of myocardial infarction |
title_short | Immunomodulation by systemic administration of human-induced pluripotent stem cell-derived mesenchymal stromal cells to enhance the therapeutic efficacy of cell-based therapy for treatment of myocardial infarction |
title_sort | immunomodulation by systemic administration of human-induced pluripotent stem cell-derived mesenchymal stromal cells to enhance the therapeutic efficacy of cell-based therapy for treatment of myocardial infarction |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7778603/ https://www.ncbi.nlm.nih.gov/pubmed/33408772 http://dx.doi.org/10.7150/thno.46119 |
work_keys_str_mv | AT sunsijia immunomodulationbysystemicadministrationofhumaninducedpluripotentstemcellderivedmesenchymalstromalcellstoenhancethetherapeuticefficacyofcellbasedtherapyfortreatmentofmyocardialinfarction AT laiwinghon immunomodulationbysystemicadministrationofhumaninducedpluripotentstemcellderivedmesenchymalstromalcellstoenhancethetherapeuticefficacyofcellbasedtherapyfortreatmentofmyocardialinfarction AT jiangyu immunomodulationbysystemicadministrationofhumaninducedpluripotentstemcellderivedmesenchymalstromalcellstoenhancethetherapeuticefficacyofcellbasedtherapyfortreatmentofmyocardialinfarction AT zhenzhe immunomodulationbysystemicadministrationofhumaninducedpluripotentstemcellderivedmesenchymalstromalcellstoenhancethetherapeuticefficacyofcellbasedtherapyfortreatmentofmyocardialinfarction AT weirui immunomodulationbysystemicadministrationofhumaninducedpluripotentstemcellderivedmesenchymalstromalcellstoenhancethetherapeuticefficacyofcellbasedtherapyfortreatmentofmyocardialinfarction AT lianqizhou immunomodulationbysystemicadministrationofhumaninducedpluripotentstemcellderivedmesenchymalstromalcellstoenhancethetherapeuticefficacyofcellbasedtherapyfortreatmentofmyocardialinfarction AT liaosongyan immunomodulationbysystemicadministrationofhumaninducedpluripotentstemcellderivedmesenchymalstromalcellstoenhancethetherapeuticefficacyofcellbasedtherapyfortreatmentofmyocardialinfarction AT tsehungfat immunomodulationbysystemicadministrationofhumaninducedpluripotentstemcellderivedmesenchymalstromalcellstoenhancethetherapeuticefficacyofcellbasedtherapyfortreatmentofmyocardialinfarction |