Cargando…

Silencing Nrf2 attenuates chronic suppurative otitis media by inhibiting pro-inflammatory cytokine secretion through up-regulating TLR4

Compromised TLR-mediated chronic inflammation contributes to bacterial infection-caused chronic suppurative otitis media, but the mechanisms are unclear. The present study examined the expression status of nuclear erythroid 2-related factor 2 (Nrf2) and TLRs in human middle-ear mucosae tissues colle...

Descripción completa

Detalles Bibliográficos
Autores principales: Tuoheti, Abulajiang, Gu, Xingzhi, Cheng, Xiuqin, Zhang, Hua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780353/
https://www.ncbi.nlm.nih.gov/pubmed/32579053
http://dx.doi.org/10.1177/1753425920933661
Descripción
Sumario:Compromised TLR-mediated chronic inflammation contributes to bacterial infection-caused chronic suppurative otitis media, but the mechanisms are unclear. The present study examined the expression status of nuclear erythroid 2-related factor 2 (Nrf2) and TLRs in human middle-ear mucosae tissues collected from patients with chronic suppurative otitis media, chronic otitis media and non-otitis media, and found that Nrf2 was high-expressed, whereas TLR4, instead of other TLRs, was low expressed in chronic suppurative otitis media compared to chronic otitis media and non-chronic otitis media groups. Consistently, inflammatory cytokines were significantly up-regulated in the chronic suppurative otitis media group, instead of the chronic otitis media and non-chronic otitis media groups. Next, LPS-induced acute otitis media and chronic suppurative otitis media models in mice were established, and high levels of inflammatory cytokines were sustained in the mucosae tissues of chronic suppurative otitis media mice compared to the non-otitis media and acute otitis media groups. Interestingly, continuous low-dose LPS stimulation promoted Nrf2 expression, but decreased TLR4 levels in chronic suppurative otitis media mice mucosae. In addition, knock-down of Nrf2 increased TLR4 expression levels in chronic suppurative otitis media mice, and both Nrf2 ablation and TLR4 overexpression inhibited the pro-inflammatory cytokine expression in chronic suppurative otitis media. Finally, we found that both Nrf2 overexpression and TLR4 deficiency promoted chronic inflammation in LPS-induced acute otitis media mice models. Taken together, knock-down of Nrf2 reversed chronic inflammation to attenuate chronic suppurative otitis media by up-regulating TLR4.