Cargando…
Bis-silylation of internal alkynes enabled by Ni(0) catalysis
1,2-Bis-silyl alkenes have exciting synthetic potential for programmable sequential synthesis via manipulation of the two vicinal silyl groups. Transition metal-catalyzed bis-silylation of alkynes with disilanes is the most straightforward strategy to access such useful building blocks. However, thi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7782505/ https://www.ncbi.nlm.nih.gov/pubmed/33397974 http://dx.doi.org/10.1038/s41467-020-20392-w |
Sumario: | 1,2-Bis-silyl alkenes have exciting synthetic potential for programmable sequential synthesis via manipulation of the two vicinal silyl groups. Transition metal-catalyzed bis-silylation of alkynes with disilanes is the most straightforward strategy to access such useful building blocks. However, this process has some limitations: (1) symmetric disilanes are frequently employed in most of the reactions to assemble two identical silyl groups, which makes chemoselective differentiation for stepwise downstream transformations difficult; (2) the main catalysts are low-valent platinum group transition metal complexes, which are expensive; and (3) internal alkynes remain challenging substrates with low inherent reactivity. Thus, the development of abundant metal-catalyzed bis-silylation of internal alkynes with unsymmetrical disilanes is of significance. Herein, we solve most of the aforementioned limitations in bis-silylation of unsaturated bonds by developing a strongly coordinating disilane reagent and a Ni(0) catalytic system. Importantly, we sufficiently realize the stepwise recognition of the two silyl groups, making this synthetic protocol of wide potential utility. |
---|