Cargando…
Machine learned features from density of states for accurate adsorption energy prediction
Materials databases generated by high-throughput computational screening, typically using density functional theory (DFT), have become valuable resources for discovering new heterogeneous catalysts, though the computational cost associated with generating them presents a crucial roadblock. Hence the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7782579/ https://www.ncbi.nlm.nih.gov/pubmed/33398014 http://dx.doi.org/10.1038/s41467-020-20342-6 |